
4/5/21, 10)50 PMIntermediate Programming

Page 1 of 185http://itec2150.gitlab.io/

Intermediate Programming

Hyesung Park, Sonal S. Dekhane, Wei Jin, Cynthia Johnson, Yan Zong Ding, Tacksoo Im



4/5/21, 10)50 PMIntermediate Programming

Page 2 of 185http://itec2150.gitlab.io/

Table of Contents
1. Objects

1.1. Learning Outcomes
1.2. Resources

1.2.1. Text
1.2.2. Videos

1.3. Introduction

1.4. Creating Objects
1.5. Difference between primitive type and reference type variables

1.6. Difference between Stack and Heap Memory
1.7. Passing Objects to Methods and Returning Objects from Methods

1.8. Key Terms
1.9. Exercises

1.9.1. Exercise 1
1.9.2. Exercise 2

1.9.3. Exercise 3
1.10. Issue Tracker/Comments

2. Object-Oriented Programming Design, Class Relationship, and Inheritance
2.1. Learning Outcomes

2.2. Resources
2.2.1. Text

2.2.2. Videos

2.3. Introduction
2.4. Object Oriented Program Design

2.4.1. Class Abstraction and Encapsulation
2.5. Class Relationship

2.5.1. Association
2.5.2. Aggregation

2.5.3. Composition
2.6. Inheritance

2.6.1. Overloading vs. Overriding
2.6.2. Accessibility Issue

2.7. Key Terms
2.8. Exercises

2.8.1. Exercise 1
2.8.2. Exercise 2

2.9. References
2.10. Issue Tracker/Comments

3. Polymorphism / Abstract Classes / Interfaces

3.1. Learning Outcomes



4/5/21, 10)50 PMIntermediate Programming

Page 3 of 185http://itec2150.gitlab.io/

3.2. Resources

3.2.1. Text
3.2.2. Videos

3.3. Introduction
3.4. Polymorphism through Inheritance

3.4.1. Dynamic Binding and Polymorphism
3.4.2. Why Polymorphism is Useful?

3.5. Abstract Class
3.5.1. Polymorphism through Abstract Class

3.5.2. An Experiment: Removing the Abstract Methods from the Super Class
3.6. Interface

3.6.1. A Class Can Implement Multiple Interfaces
3.6.2. Polymorphism through Interface

3.6.3. Interface Inheritance
3.7. Summary

3.8. Key Terms

3.9. Exercises
3.9.1. Exercise 1

3.9.2. Exercise 2
3.9.3. Exercise 3

4. Exceptions
4.1. Learning Outcomes

4.2. Resources
4.2.1. Text and Tutorials

4.2.2. Videos
4.3. Overview

4.4. Exception Handling
4.5. Checked Exception vs UnChecked Exception

4.6. Try/Catch/Finally Blocks
4.6.1. Declaring an exception

4.6.2. Throwing an exception
4.6.3. Catching an exception

4.7. Handling Exception vs Throwing Exception

4.8. Custom Exceptions
4.9. An example of Exception Handling used to validate input from user

4.10. Summary
4.11. Key Terms

4.12. Exercises
4.12.1. Exercise 1

4.12.2. Exercise 2



4/5/21, 10)50 PMIntermediate Programming

Page 4 of 185http://itec2150.gitlab.io/

4.12.3. Exercise 3

4.13. Issue Tracker/Comments
5. File Input/Output

5.1. Learning Outcomes
5.2. Resources

5.2.1. Text and Tutorials
5.2.2. Videos

5.3. Overview
5.4. Streams and Files

5.5. The File class
5.6. BufferedReader and BufferedWriter

5.6.1. An Example using BufferedReader and BufferedWriter
5.7. PrintWriter

5.7.1. Example of writing data to a text file
5.8. Scanner

5.8.1. How does Scanner work?

5.8.2. File reading Examples
5.9. Regular Expressions and parsing a file

5.10. Case Study: A Client Database
5.11. Key Terms

5.12. Exercises
5.12.1. Exercise 1

5.12.2. Exercise 2
5.12.3. Exercise 3

5.13. Issue Tracker/Comments
6. Generics

6.1. Learning Outcomes
6.2. Resources

6.2.1. Text
6.2.2. Videos

6.3. Introduction
6.4. Motivations and Benefits

6.5. Defining Generic Classes

6.5.1. Type Parameters/Type Variables
6.5.2. How to Use Generics?

6.5.3. Defining Generic Interfaces
6.6. Generic Methods

6.6.1. The Bounded Generic Type
6.7. Raw Types and Backward Compatibility

6.8. Wildcard Generic Types



4/5/21, 10)50 PMIntermediate Programming

Page 5 of 185http://itec2150.gitlab.io/

6.9. Erasure

6.9.1. Class Type Erasure
6.9.2. Erasure of Generic Methods

6.10. Key Terms
6.11. Exercises

6.11.1. Exercise 1 (Palindrome)
6.11.2. Exercise 2

6.11.3. Exercise 3
6.11.4. Exercise 4

6.11.5. Exercise 5
6.12. References

6.13. Issue Tracker/Comments
7. Recursion

7.1. Learning Outcomes
7.2. Resources

7.2.1. Text and Tutorials

7.2.2. Videos
7.3. Introduction

7.4. Permutations and Combinations
7.5. Using Recursion in Mazes

7.6. Summary
7.7. Key Terms

7.8. Exercises
7.9. Issue Tracker/Comments

8. Basic Data Structures and Sorting
8.1. Learning Objectives

8.2. Resources
8.2.1. Text

8.3. Introduction
8.4. Lists

8.4.1. The Java List Interface
8.4.2. The ArrayList and LinkedList Classes

8.4.3. The List Iterator

8.4.4. Putting Things Together By Examples
8.4.5. Notes on Efficiency: Array List vs. Linked List

8.5. Stacks
8.5.1. The Stack Class

8.5.2. Applications of Stacks
8.5.3. A Classical Application: Checking for Balanced Parentheses

8.6. Queues



4/5/21, 10)50 PMIntermediate Programming

Page 6 of 185http://itec2150.gitlab.io/

8.6.1. The Queue Interface

8.6.2. Applications of Queues
8.7. Priority Queues

8.7.1. The PriorityQueue Class
8.7.2. The Comparator Interface

8.7.3. Applications of Priority Queues
8.8. Sorting

8.8.1. Naive Iterative Algorithms
8.8.2. Efficient Algorithms

8.9. Exercises
8.9.1. Exercise 1

8.9.2. Exercise 2
8.9.3. Exercise 3

8.9.4. Exercise 4
8.9.5. Exercise 5

8.9.6. Exercise 6

8.9.7. Exercise 7
8.9.8. Exercise 8

8.9.9. Exercise 9
8.9.10. Exercise 10

8.10. Issue Tracker/Comments
9. Glossary



4/5/21, 10)50 PMIntermediate Programming

Page 7 of 185http://itec2150.gitlab.io/



4/5/21, 10)50 PMIntermediate Programming

Page 8 of 185http://itec2150.gitlab.io/

1. Objects

1.1. Learning Outcomes
Students will be able to:

1. Create and use objects

2. Access objects using reference variables

3. Create reference variables using reference types

4. Differentiate between reference variables and primitive variables

5. Differentiate between stack and heap memory

6. Pass objects as arguments to methods and use as return types from methods

1.2. Resources

1.2.1. Text

Think Java : How to Think Like a Computer Scientist (https://greenteapress.com/wp/think-java/) by Allen Downey and
Chris Mayfield

Think Java Chapter 10: Objects (http://greenteapress.com/thinkjava6/html/thinkjava6011.html)

Programming Fundamentals Chapter 7: Object-Oriented Programming
(http://itec2140.ddns.net/#_object_oriented_programming)

Introduction to Programming Using Java: Chapter 5 (http://math.hws.edu/eck/cs124/downloads/javanotes8-linked.pdf)

1.2.2. Videos

Objects vs. Primitive type variables (https://www.youtube.com/watch?v=LTnp79Ke8FI)

Passing objects to methods (https://www.youtube.com/watch?v=BHtfb3lfc-g)

Memory Management in Java (https://www.linkedin.com/learning/java-memory-management/introduction?u=76116202)

1.3. Introduction
Object-oriented programming languages, such as Java are organized around objects, instead of actions. An object
represents an entity in the real world, such as a car, a home, a person, etc. Each object has state, represented by its
data fields or attributes and behavior represented by methods. Objects of the same type are defined using a class. A
class is considered to be a blueprint for the objects that it represents. Each class can have many objects, also
referred to as instances.

For example, consider a Person class. Each person can have data: name, age, eyeColor. Each person can also
perform the following actions or behaviors: walk, talk. Class Person defines the state and behavior that is
common to all objects that belong to it. Examples of objects or instances of class Person include, specific persons,

https://greenteapress.com/wp/think-java/
http://greenteapress.com/thinkjava6/html/thinkjava6011.html
http://itec2140.ddns.net/#_object_oriented_programming
http://math.hws.edu/eck/cs124/downloads/javanotes8-linked.pdf
https://www.youtube.com/watch?v=LTnp79Ke8FI
https://www.youtube.com/watch?v=BHtfb3lfc-g
https://www.linkedin.com/learning/java-memory-management/introduction?u=76116202


4/5/21, 10)50 PMIntermediate Programming

Page 9 of 185http://itec2150.gitlab.io/

such as person1, person2, person3, etc. Each of these persons will have a value for name, height and eyeColor.
The values can be different for each object. Each of these persons also have the ability to perform actions walk

and talk. See the figure.

More details about classes are available here
(https://alg.manifoldapp.org/read/programming-fundamentals/section/172537fc-8bef-4192-b5d0-ce298c466623).

Below you can see sample code for creating a class to model a square:

https://alg.manifoldapp.org/read/programming-fundamentals/section/172537fc-8bef-4192-b5d0-ce298c466623


4/5/21, 10)50 PMIntermediate Programming

Page 10 of 185http://itec2150.gitlab.io/

The above code creates a blueprint for all Squares. All objects of class Square will have attribute length. And they
all have the ability to perform actions defined by each of the methods. Below is an example of a tester class, used
to test the Square class. The tester class will have a main() method and can be used to create objects of class
Square. These objects can then perform actions by invoking the methods defined in the business class, Square.

1.4. Creating Objects

In the statement: Square square1 = new Square(); an object of class Square is being created. A class is basically a
data type defined by a programmer. Instead of a primitive data type (e.g. int, double, boolean, and char), a class is
a reference type. It is going to hold a reference to an object. We can think of a reference to an object as the

publicpublic classclass Square{
  privateprivate doubledouble length;

  publicpublic Square(){
    length = 0.0;
  }

  publicpublic Square(doubledouble inLength){
    length = inLength;
  }

  publicpublic voidvoid setLength(doubledouble inLength){
    length = inLength;
  }

  publicpublic doubledouble getLength(){
    returnreturn length;
  }

  publicpublic doubledouble computeArea(){
    returnreturn length*length;
  }

  publicpublic doubledouble computePerimeter(){
    returnreturn 4*length;
  }

  publicpublic String toString(){
    String result = "square length: " + length + "\nperimeter: " + computePerimeter() + "\narea: " + 
computeArea();
    returnreturn result;
  }

}

JAVA

publicpublic classclass SquareTester{
  publicpublic staticstatic voidvoid main(String[] args){
    Square square1 = newnew Square();
    square1.setLength(10.5);
    System.out.println(square1);
  }
}

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 11 of 185http://itec2150.gitlab.io/

“address” of the object. Through the reference, the Java runtime system - Java Virtual Machine (JVM) – can locate
where the object is located in memory.

In the example, square1 is a variable of this reference type and is referred to as a reference variable. The new
operator creates a Square object. The address of the object is assigned to the reference variable square1.

1.5. Difference between primitive type and reference type variables
A variable represents a named memory location that stores a value. When we declare a variable, we specify what
type of variable it is. Whether a variable is primitive or reference type decides how that variable is stored in the
memory. For example, if we write the following statement: int age = 5; then 4 bytes of memory is allocated for age

and the value of 5 is stored in it. This memory is referred to as age. Whereas, if we write the following statement:

Square square1 = new Square();

square1 does not directly store the value of a square, as age does. Instead, memory is allocated for object of
reference type Square and square1 (reference variable) then references that object. Instead of holding the object
itself, square1 holds the information necessary (reference or memory location) to find the object in memory. See
image below.

This difference in how memory is allocated for primitive and reference variables impacts assignment statements.
For example, if we consider the following statements:

then we know that after those three statements execute, age1 loses the original value of 40 and gets the value of
18. The memory allocation before and after looks as shown below. 

intint age1 = 40;
intint age2 = 18;
age1 = age2;

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 12 of 185http://itec2150.gitlab.io/

In this scenario, both variables are at the same memory location as before. Value of age1 has changed. Now
consider a similar scenario with objects.

Here, square1 and square2 are reference variables that hold a reference to the actual Square objects. So, when
we assign one reference variable to another, the references get assigned, not the values. See the image below.

Notice that the length values for each square object remain at their original memory locations. They do not get
copied over. The reference of square2 however, gets assigned to reference varaible square1. This means square1

no longer references the object with length 10.5. It now references the object of length 5.2.

1.6. Difference between Stack and Heap Memory
Java Virtual Machine (JVM) divides the memory into two types, the stack and the heap. The stack memory is used
to store local variables of primitive type and reference variables. On the other hand, heap stores the actual objects.
Stack memory is used for static memory allocation and is accessed in a First In Last Out manner. Every time a
method is called, stack memory is allocated to store the primitive and reference variables. When the method
finishes execution, its memory is released, control goes back to the calling method and stack memory is now
available for other methods. This video
(https://www.linkedin.com/learning/java-memory-management/the-role-of-the-stack?u=76116202) demonstrates this idea. Heap
memory on the other hand is dynamically allocated at runtime. It stores the objects themselves. So, in the above
example, reference variables square1 and square2 would be stored in the stack, whereas the objects that they
refer to would be stored on the heap. This video
(https://www.linkedin.com/learning/java-memory-management/the-role-of-the-heap?u=76116202) demonstrates how heap
memory works.

Square square1 = newnew Square(10.5);
Square square2 = newnew Square(5.2);
square1 = square2;

JAVA

https://www.linkedin.com/learning/java-memory-management/the-role-of-the-stack?u=76116202
https://www.linkedin.com/learning/java-memory-management/the-role-of-the-heap?u=76116202


4/5/21, 10)50 PMIntermediate Programming

Page 13 of 185http://itec2150.gitlab.io/

The memory illustration that includes the stack and heap for the previous example are as follows before and after
the assignment statement is executed.

1.7. Passing Objects to Methods and Returning Objects from Methods
Objects can be passed as arguments to methods, similar to primitive type variables. When objects are passed to
methods, the references of the objects are passed as shown in this video (https://www.youtube.com/watch?v=BHtfb3lfc-g).
Because of the difference between primitive and reference type variables, passing objects/primitive types to
methods results in different behavior. Compare the example in the above linked video to the example shown in
this video (https://www.youtube.com/watch?v=h9uD7ipqu3w&t=50s). Notice how when a primitive type variable is passed
to a method, the value of variable x in the main() method does not change. Whereas, when an object is passed as
an argument to a method, the value of both attributes of object person1 are changed.

Returning objects from methods, also involves returning the reference of the object. To see an example of this, let’s
add a new method to our Square class created above. This method looks as shown below:

https://www.youtube.com/watch?v=BHtfb3lfc-g
https://www.youtube.com/watch?v=h9uD7ipqu3w&t=50s


4/5/21, 10)50 PMIntermediate Programming

Page 14 of 185http://itec2150.gitlab.io/

This method creates a new object of class Square with length value of 100 and returns this newly created object.
Here, it does not actually return a copy of the newly created object, rather it returns the reference of the newly
created object. To test this new method, in the tester method, we will invoke the getSquare() method as shown
below:

The statement Square square2 = square1.getSquare(); invokes method getSquare() on reference variable
square1. This creates a new object with length 100, as defined in the getSquare() method and a reference to that
new object is returned. This is depicted in the image below: 

publicpublic Square getSquare(){
    Square newSquare = newnew Square(100);
    returnreturn newSquare;
  }

JAVA

publicpublic classclass SquareTester{
  publicpublic staticstatic voidvoid main(String[] args){
    Square square1 = newnew Square();
    square1.setLength(10.5);
    System.out.println(square1);

    Square square2 = square1.getSquare();
    System.out.println(square2);
  }
}

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 15 of 185http://itec2150.gitlab.io/

This returned object, or rather reference is then assigned to square2. The result of that is shown below. 

So, when square2 is printed, the results should be calculated accoridng to 100 as the length of the square. These
results of both square1 and square2 are shown below. 

1.8. Key Terms
Behavior: actions of an object; represented by the methods of an object.

Class: a blueprint that defines an object.

Heap memory: dynamically allocated memory used to store objects.

Object/Instance: represents an entity in the real world and has state and behavior.

Object-oriented programming: a way of organizing code around objects, instead of actions.

Reference: memory address of where the object is located.

Reference type: a class; variable of this type can reference an object of a class.

Reference variable: variable of a class type, which contains a reference to the object of that class.

Stack memory: stores local variables of primitive type and reference variables; memory is accessed in First In Last
Out order.



4/5/21, 10)50 PMIntermediate Programming

Page 16 of 185http://itec2150.gitlab.io/

State: represented by data fields or attributes of the object.

1.9. Exercises

1.9.1. Exercise 1

Create Person and PersonTester classes to model a person. Details are as follows:

Tasks: Create business class Person

1. Person should have the following properties (attributes, instance variables, member variables). Pick
appropriate data types:

a. name – stores the full name of a person

b. age – stores age of a person in whole years

c. eyeColor – stores the color of a person’s eyes

2. Create a no-argument constructor for this class

a. In the constructor for the Person class, use your information to initialize the instance variables

3. Create a 3-arg constructor that initializes the instance variables to passed parameters

4. Create getters/mutators for each instance variable

5. Create setters/accessors for each instance variable

6. Override the toString() method to return a clear message providing details of each person.

7. Create instance method talk() that prints a message “Welcome, coders! I am ”, underline should be replaced by
the person’s name. It does not need any parameters and does not return any values.

Tasks: Create tester class PersonTester

1. In the main() method, create an object of class Person called person1 using the no-argument constructor.

2. SOP person1 details using toString().

3. Invoke the appropriate setter method to set/change the name of person1 to “Howard Roark”.

4. Invoke the talk() method on person1.

5. Ensure that all of your code is thoroughly commented.

1.9.2. Exercise 2

Create a business class to model a bike. Then create a tester class to test the bike class and create list of bikes.
Details are as follows:

Bike Class

1. Create a business class called Bike

2. Bikes should at least have number of wheels, manufacturer and year data. Additional data can be created at
the programmer’s discretion.



4/5/21, 10)50 PMIntermediate Programming

Page 17 of 185http://itec2150.gitlab.io/

3. A no-arg constructor with values of 2 for number of wheels to 2, “Schwinn” for manufacturer, and 2014 for
year should eb created.

4. Other constructors, getters, setters and toString() method should be created.

BikeTester Class

1. Use the BikeTester class to create object bike1 using no-arg constructor. Print its details after creation.

2. Create object bike2 in the same manner, and use the setter methods to change the instance variable values to
those of your choice.

3. Print details of bike2.

4. Create an arraylist of bikes called bikeList.

5. Add bike1 and bike2 to this list

6. SOP bikeList

7. Count the total number of wheels on all bikes in the bikeList and print them

8. Find the year of the oldest bike in the list and print that year.

9. Ensure that all of your code is thoroughly commented.

1.9.3. Exercise 3

Create classes to model and test textbooks. Follow the instructions shown below:

1. Create a business class to model a textbook. Decide what data should be stored for a textbook and create at
least three instance variables, two constructors, and appropriate getters, setters and toString() method. Create
at least one instance method of your choice.

2. Create a tester class which creates at least two objects of the business class. Invoke various getters, setters and
instance method(s) to test the business class.

3. Comment your code thoroughly.

1.10. Issue Tracker/Comments
Issue Tracker (https://github.com/hpark7/help_desk/issues)

https://github.com/hpark7/help_desk/issues


4/5/21, 10)50 PMIntermediate Programming

Page 18 of 185http://itec2150.gitlab.io/

2. Object-Oriented Programming Design, Class Relationship, and
Inheritance

2.1. Learning Outcomes
Students will be able to:

1. Define the relationships among association, aggregation, composition, and inheritance.

2. Define a subclass from a superclass through inheritance.

3. Invoke the superclass' constructors and methods using the super keyword.

4. Override instance methods in the subclass.

5. Distinguish between overriding and overloading.

6. Explore the differences between the procedural paradigm and object-oriented paradigm.

7. Design program using the object-oriented paradigm.

2.2. Resources

2.2.1. Text

Think Java : Inheritance (https://books.trinket.io/thinkjava2/chapter14.html#sec164) by Allen Downey and Chris Mayfield

Think Java : Class Relationship (https://books.trinket.io/thinkjava2/chapter14.html#sec168) by Allen Downey and Chris
Mayfield

Think Java: Objects of Objects (https://books.trinket.io/thinkjava/chapter14.html) by Allen Downey and Chris Mayfield

Java OOP (https://www.w3schools.com/java/java_oop.asp)

Inheritance (http://tutorials.jenkov.com/java/inheritance.html)

Oracle: The Java Tutorial (https://docs.oracle.com/javase/tutorial/java/IandI/subclasses.html)

Inheritance (http://math.hws.edu/eck/cs124/javanotes3/c5/s4.html)

Method Overloading and Overriding in Java (https://www.baeldung.com/java-method-overload-override)

2.2.2. Videos

Inheritance (https://www.youtube.com/watch?v=Lsdaztp3_lw)

Inheritance in Java (https://www.youtube.com/watch?v=zbVAU7lK25Q)

UML Class Diagram and Class relationship (https://www.youtube.com/watch?v=UI6lqHOVHic)

Encapsulation in Java (https://www.youtube.com/watch?v=cU94So54cr8)

2.3. Introduction

https://books.trinket.io/thinkjava2/chapter14.html#sec164
https://books.trinket.io/thinkjava2/chapter14.html#sec168
https://books.trinket.io/thinkjava/chapter14.html
https://www.w3schools.com/java/java_oop.asp
http://tutorials.jenkov.com/java/inheritance.html
https://docs.oracle.com/javase/tutorial/java/IandI/subclasses.html
http://math.hws.edu/eck/cs124/javanotes3/c5/s4.html
https://www.baeldung.com/java-method-overload-override
https://www.youtube.com/watch?v=Lsdaztp3_lw
https://www.youtube.com/watch?v=zbVAU7lK25Q
https://www.youtube.com/watch?v=UI6lqHOVHic
https://www.youtube.com/watch?v=cU94So54cr8


4/5/21, 10)50 PMIntermediate Programming

Page 19 of 185http://itec2150.gitlab.io/

From previous chapters and open source textbook (http://itec2140.ddns.net/), you learned how to define classes for
objects. First, the body of a class declares members (fields and methods), instance and static initializers, and
constructors. Regarding the scope of a member, it is the entire body of the declaration of the class to which the
member belongs. Field, method, member class, member interface (you will learn soon) and constructor
declarations may include the access modifiers such as public, protected, private or default.

In this chapter, we will explore object-oriented program design, class relationship and inheritance. You will learn
how member of a class includes both declared and inherited members in terms of encapsulation and inheritance.
It means that you will learn how the newly declared fields can hide fields declared in a superclass, newly declared
class member can hide class or interface members declared in a superclass, and newly declared methods can
hide, implement, or override methods declared in a superclass. (source: The Java Language Specification by James
Gosling, Bill Joy, Guy Steele, Gilad Brach, Alex Bucklely)

1. Object Oriented Program Design

2. Class Relationship

3. Inheritance

2.4. Object Oriented Program Design
Object oriented programming is associated with the concepts of class, object, inheritance, encapsulation,
abstraction, polymorphism. In previous chapter, you learned about classes, and objects. The focus of this chapter
is to explore object-oriented programming.

2.4.1. Class Abstraction and Encapsulation

You will learn about Abstraction in next chapter but following description explains about Abstraction in brief to
help you understand the Encapsulation in terms of data hiding which is one of principles of object-oriented
programming.

Abstraction - Abstraction is about the quality of dealing with ideas rather than events. It means that abstraction
(https://www.w3schools.com/java/java_abstract.asp) is about hiding the details and showing the essential components
to the user. For example, without knowing about all the mechanics about the car, you can drive a car. Of
course, if you are an automotive engineer, then your job is to create the most powerful and high quality vehicle
that many people can enjoy driving. You must also know all the details to design software systems, assembly,
tooling, evaluate problems, etc. But if you just drive a car, you do not need to know how each component works
interactively inside of a car you drive everyday. This concept is about which data or information should be
visible and which data or information should be hidden.

Abstraction can be achieved with either abstract classes or interfaces and you will learn more about abstraction in
next chapter.

Encapsulation - "Class encapsulation and abstraction are two sides of the same coin" (Liang, 2018,
Introduction to Java: Programming and Data Structure) It is a process of wrapping code and data together in a
single unit. By using the concept of accesser and modifier(e.g getter and setter methods), you can read data or

http://itec2140.ddns.net/
https://www.w3schools.com/java/java_abstract.asp


4/5/21, 10)50 PMIntermediate Programming

Page 20 of 185http://itec2150.gitlab.io/

only access data. If you read the Person class, it has two private data: name and countryOfOrigin. By using
the getName() and setName() methods, in the Main tester class, you can change the name by calling
setName(String name) and access the name by calling getName(). However, there is no setter to modify the
county of origin. Only getCountryOfOrigin() method is provided. Therefore, you cannot modify or set the
value in the countryOfOrigin data member. Encapsulation is to hide the data, implementation, the class
(abstract class or interface you will learn after this chapter), design and instantiation.

2.5. Class Relationship
To design classes, Association, Aggregation, Composition, and Inheritance are four points we use to discuss the
relationships among classes.

2.5.1. Association

"Association is a general binary relationship that describes an activity between two classes. For example, a student
taking a course is an association between the Student class and the Course class. And a faculty member teaching
a course is an association between Faculty class and the Course class." (Liang. 2018 - Introduction to Java)

Example: * Course, Teacher and Student: One or More students can associate with a single teacher OR One single
student can associate with one or more teachers. And both of them can be created and deleted independently. So
when a teacher leaves the school, then teacher will be removed from the list and we do not need to delete any

publicpublic classclass Person
{
    privateprivate String name;
    privateprivate String countryOfOrigin = "Germany";

    publicpublic String getName()
    {
        returnreturn name;
    }
    publicpublic voidvoid setName(String name)
    {
        thisthis.name = name;
    }

    publicpublic String getCountryOfOrigin()
    {
        returnreturn countryOfOrigin;
    }
}

publicpublic classclass Main
{
    publicpublic staticstatic voidvoid main(String[] args)
    {
        Person person = newnew Person();
        person.setName("Ludwig van Beethoven");
        System.out.println(person.getName() + " was a " + person.getCountryOfOrigin() + " composer." );
    }
}

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 21 of 185http://itec2150.gitlab.io/

students. And when a student leaves the school, any teachers are not leaving. Following example source code is
showing how to implement association using the classes of Student, Course, and Teacher. For example,
addstudent() method in the Course class and addCourse() method in the Student class shows how the
association relationship is implemented.

Some of the association relationship can be categorized as either Aggregation or Composition. See This example
(https://www.geeksforgeeks.org/association-composition-aggregation-java/)

2.5.2. Aggregation

 classclass Course
 {
        privateprivate String courseName;
        privateprivate ArrayList<Student> enrollmentList = newnew ArrayList<Student>();
        privateprivate Teacher teacher;

        publicpublic voidvoid addStudent(Student student)
        {
                enrollmentList.add(student);
        }

    }

classclass Student {
        privateprivate ArrayList<Course> registeredCourse;
        privateprivate String studentName;

        publicpublic voidvoid addCourse(Course course)
        {
            //
        }

    }

classclass Teacher
{
        privateprivate ArrayList<Course> teachingCourse;
        publicpublic voidvoid addCourse(Course c)
        {
           //
        }
}

JAVA

https://www.geeksforgeeks.org/association-composition-aggregation-java/


4/5/21, 10)50 PMIntermediate Programming

Page 22 of 185http://itec2150.gitlab.io/

This relationship is "has-a" relationship between two objects. It is more specialized relationship of the association
relationship. The owner object is called an aggregating object and its class is called aggregating class. Child object
or subject object is called aggregated object and its class is called aggregated class.

Examples: Student class and Address class. Student class can have reference of Address class but Address class
does not have the reference of Student class. It does not involve owning so address does not need to be tied to a
student. An address can exist by itself.

Employee class may have fields id, name, email, phone, etc. And also contains an object named address. Let’s
suppose this address has fields city, state, zipcode, etc. In this case, Employee has an address so the relationship
is "Employee Has-A address." (See below)

2.5.3. Composition

This relationship is also has-a relationship when a class has the ownership of another subject class but the subject
depends on the owner class. If the existence of the aggregated object is dependent on the aggregating object, then
the relationship is composition. Composition is the strongest form of association and aggregation is weaker
relationship while Aggregation and Composition are very similar. For example, please take a look at the following
programs, Person and Job. The Person has a job instance variable so we can create a Job class. It has "a person

has a job" relationship.

classclass Employee
{
   intint id;
   String name;
   Address address;//Address is a class
}

JAVA

publicpublic classclass Person
{
    //composition has-a relationship
    privateprivate Job job;

    publicpublic Person()
    {
        thisthis.job=newnew Job();
        job.setSalary(1000L);
    }
    publicpublic longlong getSalary()
    {
        returnreturn job.getSalary();
    }
}

publicpublic classclass Job
{
    privateprivate String position;
    privateprivate longlong salary;
    privateprivate intint id;
    publicpublic String getRole()
    {

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 23 of 185http://itec2150.gitlab.io/

Thormben Janssen explains about the composition connecting to the real world including benefits with more
examples (https://stackify.com/oop-concepts-composition/).

2.6. Inheritance
Inheritance is a powerful mechanism that allows you to define new classes from an existing class. The existing
class is a more general class, called a superclass. A superclass is also referred to as a parent class or a base class.
The Java inheritance allows a Java class to inherit from a single superclass. Only singular inheritance is allowed.

The new classes are specialized cases of the superclass. They are called subclasses of that super class. A subclass
automatically inherits all the instance variables methods from its superclass. It may define its own new variables
and methods. It may also override any inherited methods. It means that the method has the same method
signature in both the superclass and subclass. It means to provide a new implementation for that method in the
subclass.

        returnreturn position;
    }

    publicpublic voidvoid setRole(String position)
    {
        thisthis.position = position;
    }

    publicpublic longlong getSalary()
    {
        returnreturn salary;
    }

    publicpublic voidvoid setSalary(longlong salary)
    {
        thisthis.salary = salary;
    }

    publicpublic intint getId()
    {
        returnreturn id;
    }

    publicpublic voidvoid setId(intint id)
    {
        thisthis.id = id;
    }
}

publicpublic classclass Main
{
    publicpublic staticstatic voidvoid main(String[] args)
    {
        Person john = newnew Person();
        longlong salary = john.getSalary();
        System.out.println("John's Salary is " + salary);
    }
}

https://stackify.com/oop-concepts-composition/


4/5/21, 10)50 PMIntermediate Programming

Page 24 of 185http://itec2150.gitlab.io/

The subclass and its superclass form a is-a relationship. See the diagram of a superclass called Vehicle and two
subclasses called Car and Truck, Car is a Vehicle and Truck is a Vehicle. In other words, Car class inherits all
accessible data fields and methods from the Vehicle class and the Truck class inherits all accessible data fields and
methods from the Vehicle class. In UML, an arrow points from a subclass to its superclass.

According to David A. Taylor in his book Object-Oriented Technology, he mentioned that the object-oriented
approach is more natual. For example,"the basic building block out of which all living things are composed is the
cell. Cells are organic package that, like objects, combine related information and behavior. Most of the
information is contained in protein molecules within the nucleus of the cell. The behavior, which may range from
energy conversion to movement, is carried out by structure outside the nucleus.” He also explained about the
hierarchy of cell types as you see the inheriting cell diagram. "The cell is truly universal building block. All cells
share a common structure and operate according to the same basic principles. Within this basic structure, plant
cells have a hard outer wall to make them ridgid, blood cells are mobile and specialized to transport gases, muscle
cells are able to distort their shape to perform mechanical work."

2.6.1. Overloading vs. Overriding

Overloading a method is to define multiple methods with the same name but different signatures.



4/5/21, 10)50 PMIntermediate Programming

Page 25 of 185http://itec2150.gitlab.io/

Overriding methods is to provide a new implementation for a method in the subclass (See example methods
from ClassB and NamePoint).

In following diagram, the ClassA is the superclass and ClassB is the subclass.

publicpublic classclass Addition
{

    publicpublic intint add(intint a, intint b)
    {
        returnreturn a + b;
    }

    publicpublic intint add(intint a, intint b, intint c)
    {
        returnreturn a + b + c;
    }

}

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 26 of 185http://itec2150.gitlab.io/

In following diagram, the ClassA is the superclass for ClassC and ClassB and ClassC is the superclass for ClassD.

/**
 * Class: ClassA
 */
publicpublic classclass ClassA {
    protectedprotected intint m;

    publicpublic String toString()
    {
        returnreturn newnew String("(" + m + ")");
    }
}

/**
 * Class: ClassB
 */
publicpublic classclass ClassB extendsextends ClassA
{
    privateprivate intint n;

    publicpublic String toString()
    {
        returnreturn newnew String ("(" + m + "," + n + ")");
    }
}

/**
 * Class: Main
 */
publicpublic classclass Main
{
    publicpublic staticstatic voidvoid main(String[] args)
    {
        ClassA a = newnew ClassA();
        System.out.println("a = " + a);
        ClassB b = newnew ClassB();
        System.out.println("b = " + b);
    }
}

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 27 of 185http://itec2150.gitlab.io/

Let’s take a look at The Point class and NamedPoint class. The Point class has two private instance variables x
and y and it is the superclass of a subclass NamedPoint class. As a result of inheritance, the NamedPoint class
instance/object will have three fields: x and y inherited from the superclass Point and the String instance variable
name which is defined in the NamedPoint class.

The NamedPoint class has a total five regular methods. It inherits the equals(), getX(), and getY() methods from
the superclass Point. It creates a new method getName() and overrides an existing method toString(). Besides
the five regular methods, the NamedPoint class also contains a constructor with three parameters: x, y, and
name. The constructor of the NamedPoint invokes the constructor of the Point superclass using the keyword
super by passing x and y. Inheritance applies to class field x and y and methods getX(), getY(), equals(), but not
constructors. It is because the constructor must always have the same name as its class. Thus, subclasses usually
explicitly define their own constructors.

publicpublic classclass Point
{
    //objects represent lattice points in the cartesian plane
    //object are immutable

    protectedprotected doubledouble x, y; // the point's coordinates. In this program, we used protected.

    publicpublic Point(doubledouble x, doubledouble y){
        thisthis.x = x;
        thisthis.y = y;
    }

    publicpublic booleanboolean equals(Point p)
    {
        returnreturn (x == p.x && y == p.y);
    }

    publicpublic doubledouble getX()
    {
        returnreturn x;

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 28 of 185http://itec2150.gitlab.io/

    }

    publicpublic doubledouble getY()
    {
        returnreturn y;

    }

    publicpublic String toString()
    {
        returnreturn newnew String("(" + getX() + ", " + getY() + ")"); //why getX() and getY()?
    }
}

/**
 * this class to hold named location's information for data point (coordinates of x and y).
 */
publicpublic classclass NamedPoint extendsextends Point
{
    finalfinal privateprivate String name;

    publicpublic NamedPoint(doubledouble x, doubledouble y, String name)
    {
        supersuper(x, y);
        //super keyword is to invoke superclass' constructor. This statement super(x,y) invokes the Point class 
constructor
        //that matches the arguments and it must be the first statement of the subclass' constructor as you see 
here.
        //this is the way to explicitly invoke a superclass construtor.
        thisthis.name = name;
    }

    publicpublic String getName()
    {
        returnreturn name;
    }

    @Override
    publicpublic String toString()
    {
        returnreturn name + "(" + x + ", " + y + ")"; //why x and y?
    }
}

publicpublic classclass Main
{
    publicpublic staticstatic voidvoid main(String[] args)
    {
        NamedPoint p = newnew NamedPoint(0,0, "Origin (O)");
        System.out.println("p: " + p);

        System.out.println("P.getName(): " + p.getName());
        System.out.println("p.getX(): " + p.getX()); //getX() method is inherited from the Point superclass.

        NamedPoint q = newnew NamedPoint(1,10,"A");
        System.out.println("q: " + q);

        System.out.println("q.equals(p): " + q.equals(p));
        //q is able to invoke the equals() method that it inherited from the superclass.



4/5/21, 10)50 PMIntermediate Programming

Page 29 of 185http://itec2150.gitlab.io/

2.6.2. Accessibility Issue

Table 1. Access Levels

Modifier Class Package Subclass World

public Y Y Y Y

protected Y Y Y N

no modifier or
default

Y Y N N

private Y N N N

If the instance variables in the super class are private, the subclass cannot directly access these variables, even
though they are inherited. To retrieve/update the values of these variables, the getter/setter method of the super
class will need to be used. The following is an example.

    }
}

 // Testing if a subclass can access the private members of a superclass

classclass Vehicle
{
    privateprivate String licensePlate;

    publicpublic String getLicensePlate()
    {
        returnreturn licensePlate;
    }

    publicpublic voidvoid setLicensePlate(String licensePlate)
    {
        thisthis.licensePlate = licensePlate;
    }
}

classclass Car extendsextends Vehicle
{

   privateprivate intint numberOfSeat;
   privateprivate intint manufacturedYear;

    publicpublic intint getNumberOfSeat()
    {
        returnreturn numberOfSeat;
    }

    publicpublic voidvoid setNumberOfSeat(intint numberOfSeat)
    {
        thisthis.numberOfSeat = numberOfSeat;

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 30 of 185http://itec2150.gitlab.io/

2.7. Key Terms
Access specifiers: private, default, protected, and public.

Association: a general binary relation between two separate classes. For example, a student taking a course is an
association between the Student class and the Course class.

Aggregation: an association when one object uses another object.

Composition: an association when one object owns other class and other class cannot meaningfully exist.
Composition is stronger than aggregation.

Default access specifier (no modifier): accessible within the same package.

    }

    publicpublic intint getManufacturedYear()
    {
        returnreturn manufacturedYear;
    }

    publicpublic voidvoid setManufacturedYear(intint manufacturedYear)
    {
        thisthis.manufacturedYear = manufacturedYear;
    }

    @Override
    publicpublic String toString()
    {
        returnreturn "Car\n" +
                "Number of Seats: " + numberOfSeat + '\n' +
                "Manufactured Year: " + manufacturedYear;
    }
}

publicpublic classclass Main
{
    publicpublic staticstatic voidvoid main(String[] args)
    {

        Vehicle vehicle = newnew Vehicle();
        Car car = newnew Car();

        //no error to set value because setLicensePlate() is public method of the Vehicle superclass
        //but you cannot modify the value of licensePlate directly from the superclass - Vehicle
        vehicle.setLicensePlate("UIO678");

        car.setNumberOfSeat(7);  //no error to setNumberOfSeat because setNumberOfSeat() is a public method of 
the Car class
        car.setManufacturedYear(2020);//no error to setManufacturedYear because setManufacturedYear() is a 
public method of the Car class

        System.out.println(car.toString());
    }
}



4/5/21, 10)50 PMIntermediate Programming

Page 31 of 185http://itec2150.gitlab.io/

Inheritance: a mechanism to define new classes from existing classes. In java, classes can inherit the properties
and methods of superclass.

private access specifier: acceessible within the class where defined.

protected access specifier: accessible to class

public access specifier: accessible from subclasses and members of the same package.

Overriding method:When a method in a subclass has the same name, same parameters or signature, and same
return types(or sub-type) as a method in its superclass.

Overloading method: a class is allowed to have more than one method having the same name as long as their
parameter lists are different.

Superclass (a parent class or a base class): a general class which a method(s) to a subclass. Or the class being
inherited from.

Subclass (child): The derived class that is derived from superclass.

2.8. Exercises

2.8.1. Exercise 1

File allocation: Write a program named Storage and a Tester Program to allocate files based on the file size and
maximum capacity of the storage. A storage has multiple blocks to store files. Each block has maximum capacity to
store files and maximum capacity will be given by the user. Please use the first fit algorithm that places each file
into the first block where it would fit. Your program should prompt the user to enter the maximum size of the
directory A (e.g. What is the maximum size of the directory A?"), also prompt the user to enter the number of files
to store, and then prompt the user to enter each file size in KB. The program will display the total number of
blocks needed to store files and file size. Use the starter code provided as follows and here is the sample run:

What is the maximum size of the directory A?
50
How many files do you have to store in directory A
10
Enter each file size in KB
4 5 10 2 7 9 5 23 11 8
Block 1 can store following size file(s)4 5 10 2 7 9 5 8  (in KB)
Block 2 can store following size file(s)23 11  (in KB)

Starter Code:

importimport java.util.ArrayListjava.util.ArrayList;
importimport java.util.Scannerjava.util.Scanner;
publicpublic classclass Main
{
    publicpublic staticstatic voidvoid main(String[] args)
    {

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 32 of 185http://itec2150.gitlab.io/

2.8.2. Exercise 2

Your task is to develop a program to display recipes of different types of bread(e.g. sourdough bread, muffins,
pastries, etc)

        Scanner input = newnew Scanner(System.in);
        //complete here
        }
    }

    publicpublic staticstatic ArrayList<Storage> firstFit(intint[] fileSizeList, intint maxFileSize)
    {

        //Complete here
    }

}

importimport java.util.ArrayListjava.util.ArrayList;

publicpublic classclass Storage
{
    privateprivate ArrayList<Integer> file = newnew ArrayList<>();
    privateprivate intint maxFileSize = 0;
    privateprivate intint totalSize = 0;

    publicpublic Storage(intint maxFileSize)
    {
      //complete here
    }

    /**
     * method addFile
     * @param fileSize
     * @return boolean
     * description: this method will add file as long as total size
     * includng a new file size you want to add
     * is not larger than the maximum file size
     */
    publicpublic booleanboolean addFile(intint fileSize)
    {
         //complete here
    }

    publicpublic intint getNumberOfFiles()
    {
        returnreturn file.size();
    }

    @Override
    publicpublic String toString()
    {
         //complete here
    }
}



4/5/21, 10)50 PMIntermediate Programming

Page 33 of 185http://itec2150.gitlab.io/

Directions are as follows.
▪Create Bread superclass that has default constructor with general ingredients and recipe.
It also has a constructor with all the parameters. Bread also comes with getter, setter, and toString methods.
Besides those methods, the Bread superclass has the bake method to change the state of bread from "not baked" to 
"baked",
unless it is already "baked."
And also has getIngredients method.
This method returns a String of all the ingredients of the instance. And you can add other methods as you want.
There are five subclasses of Bread class. Each of them will have unique properties with unique ingredients.

–Instance variables: flour, water, salt, sugar, baking powder, yeast, breadName, state, recipe.
–Default constructor
–Constructor with all parameters.
–Getters, setters, toString method.
–bake, getIngredients, and other methods you want to include.
▪Create SourdoughBread subclass
–Instance variables: you will need to create unique instance variables for sourdough bread.
–Constructors, getters, setters, recipe method  to describe how to, and toString or you can add other methods 
you want to include.

▪Create Pastry subclass
–Instance variables: you will need to create unique instance variables for pastry.
–Constructors, getters, setters, recipe method  to describe how to, and toString or you can add other methods 
you want to include
▪Create three more different type of bread subclasses (e.g. SourdoughBread- see follow sample)
–Constructors, getters, setters, recipe method  to describe how to, and toString or you can add other methods 
you want to include
▪Main class.  This class has an instance of Bread and its subclasses. This program will display recipes of all 
classes and methods.
▪ReadMe.txt – this file will explain about your program in details.

A part of the sample run is as follows:

SourdoughBread class testing

Ingredients of Sourdough Bread are:
5.00 cups of flour
1.50 cups of water
2.50 tsps of salt
1.00 tsp of yeast
1.00 cup of ripe sourdough starter

A recipe of Sourdough Bread:
1. Mix flour, water, salt, baking powder, yeast, and ripe sourdough starter.
2. Make the dough
3. Bulk Rise
4. Stretch and fold the dough
5. Cut and shape the dough
6. Second rise
6. Preheat the oven to 450°F towards the tail end of the second rise.
7. Spray the laof with luke warm water.
8. Bake the bread at 400°F for 20 minutes, until deep golden brown.
9. Remove the bread from the oven.
10.Let the bread cool until good to eat.
Can't bake, Sourdough Bread is already baked.
The Sourdough Bread is baked now.



4/5/21, 10)50 PMIntermediate Programming

Page 34 of 185http://itec2150.gitlab.io/

2.9. References
Liang, D. (2018). Introduction to Java: Programming and Data Structures (11th ed.). Pearson Taylor, D.A. (1981).
Object-Oriented Technology: A Manager’s Guide.Servio

2.10. Issue Tracker/Comments
Issue Tracker (https://github.com/hpark7/help_desk/issues)

https://github.com/hpark7/help_desk/issues


4/5/21, 10)50 PMIntermediate Programming

Page 35 of 185http://itec2150.gitlab.io/

3. Polymorphism / Abstract Classes / Interfaces

3.1. Learning Outcomes
Students will be able to:

1. Describe what is polymorphism

2. Use polymorphism to store objects of different classes in one data structure (e.g. an array) and process them in
a loop

3. Describe what is abstract method and abstract class

4. Describe the advantages of including an abstract method in a super class even if it cannot be implemented

5. Identify what method in a super class is a good candidate to be an abstract method

6. Create an abstract class and its subclasses

7. Describe what is an interface

8. Create an interface

9. Implement an interface

10. Implement an interface at the same time extending a super class

11. Compare and contract an interface and an abstract class

12. Describe and utilize interface inheritance

3.2. Resources

3.2.1. Text

Think Java by Allen Downey and Chris Mayfield: Chapter 16 (Section 3) - Abstract Class
(https://books.trinket.io/thinkjava2/chapter16.html#sec195)

Introduction to Programming Using Java - Eighth Edition by David J. Eck: Chapter 5 (Section 5 and 7) -
Polymorphism (http://math.hws.edu/javanotes/c5/index.html)

Java, Java, Java: Object-Oriented Problem Solving by Ralph Morelli and Ralph Walde: Chapter 8 - Inheritance
and Polymorphism (http://www.cs.trincoll.edu/~ram/jjj/jjj-os-20170625.pdf)

Oracle Java Tutorial Lessons:

Polymorphism (https://docs.oracle.com/javase/tutorial/java/IandI/polymorphism.html)

Abstract Methods and Classes (https://docs.oracle.com/javase/tutorial/java/IandI/abstract.html)

Interface (https://docs.oracle.com/javase/tutorial/collections/interfaces/index.html)

W3School Java Tutorials:

Polymorphism (https://www.w3schools.com/java/java_polymorphism.asp)

https://books.trinket.io/thinkjava2/chapter16.html#sec195
http://math.hws.edu/javanotes/c5/index.html
http://www.cs.trincoll.edu/~ram/jjj/jjj-os-20170625.pdf
https://docs.oracle.com/javase/tutorial/java/IandI/polymorphism.html
https://docs.oracle.com/javase/tutorial/java/IandI/abstract.html
https://docs.oracle.com/javase/tutorial/collections/interfaces/index.html
https://www.w3schools.com/java/java_polymorphism.asp


4/5/21, 10)50 PMIntermediate Programming

Page 36 of 185http://itec2150.gitlab.io/

Abstract Classes and Methods (https://www.w3schools.com/java/java_abstract.asp)

Interface (https://www.w3schools.com/java/java_interface.asp)

http://tutorials.jenkov.com/

Abstract Class (https://www.journaldev.com/1582/abstract-class-in-java)

Interface (https://www.journaldev.com/1601/interface-in-java)

3.2.2. Videos

The Coding Train: Introduction to Polymorphism (https://www.youtube.com/watch?v=qqYOYIVrso0)

Abstract Classes and Interface (https://www.youtube.com/watch?v=52frlN8webg&t=425s)

Java Interface Tutorial - Learn Interfaces in Java (https://www.youtube.com/watch?v=kTpp5n_CppQ)

LinkedIn Learning - Java Essential Training (Chapter 10) Requires Login
(https://www.linkedin.com/learning/java-8-essential-training/welcome?u=76116202)

3.3. Introduction
From the previous chapter, you have learned that inheritance is a very powerful tool that a programmer can use
to create a child class from a parent class. Instead of defining a class from scratch, the child class will inherit all the
attributes and methods from the parent class. The child class can declare its own additional attributes and
methods and override the definition for an inherited method. Through inheritance, we can build a hierarchy of
related classes.

In this chapter, we will learn several concepts, mainly through examples. Before we start our journey in this
chapter, here is a brief overview of these concepts.

Because of inheritance, a reference variable could refer to objects that belong to any of its subclasses. This is called
polymorphism. Polymorphism can be utilized to make programming more convenient. For example, you are
programming a computer game that contains various characters. The characters belong to several different classes
and these classes have a common super class. Instead of using different arrays, each for characters belonging to a
specific class, polymorphism will allow you to store all the characters in one array. You can also use a loop to
process all these characters (such as moving each character to its next location) instead of using separate loops for
each type of characters. In addition, one method can be used to process characters belonging to different classes.
This helps avoid defining multiple methods that do the same things with the only difference being the data type of
one or more parameters (method overloading).

Abstract class is a way to define a super class that leaves some methods undefined. These methods are called
abstract methods. These methods contain just method headers and have no method bodies. They will need to be
overridden in a concrete (non-abstract) subclass. For example, if we write a game program which contains a super
class Character and subclasses Dog, Cat, and Bird, we may decide that Dog, Cat and Bird objects should be able to
execute a walk method, which calculates how to animate a character when it walks. It is possible to implement
the method in all the subclasses using the knowledge we have regarding how dogs, cats and birds walk. However,

https://www.w3schools.com/java/java_abstract.asp
https://www.w3schools.com/java/java_interface.asp
http://tutorials.jenkov.com/
https://www.journaldev.com/1582/abstract-class-in-java
https://www.journaldev.com/1601/interface-in-java
https://www.youtube.com/watch?v=qqYOYIVrso0
https://www.youtube.com/watch?v=52frlN8webg&t=425s
https://www.youtube.com/watch?v=kTpp5n_CppQ
https://www.linkedin.com/learning/java-8-essential-training/welcome?u=76116202


4/5/21, 10)50 PMIntermediate Programming

Page 37 of 185http://itec2150.gitlab.io/

for the super class Character, there is really no meaningful implementation for the walk method. We could make
Character an abstract class and mark the walk method abstract. This eliminates unnecessary code in the super
class and at the same time guarantee that all the non-abstract subclasses implement the method.

Interface is another mechanism to enable polymorphism. It is parallel to the class inheritance mechanism. Instead
of containing attributes and methods, an interface contains only abstract methods. A class can implement an
interface by providing definitions for the abstract methods contained in the interface. A variable of an interface
type can be used to hold references to objects of any classes that implement the interface. This allows even more
flexible polymorphism than that is enabled by the inheritance relationships.

3.4. Polymorphism through Inheritance
In this section, we will first learn what is dynamic binding and polymorphism and then understand why
polymorphism is a powerful tool to make it easy to manage objects belonging to different classes.

3.4.1. Dynamic Binding and Polymorphism

Each of us can assume different identities. For example, we are all members of the GGC community, while some of
us belong to the employee category and the others belong to the student category. Employees are further divided
into the staff category and the faculty category. If we use a Java class to capture each category, the following UML
captures the relationship among these classes.

The following are definitions for these classes.

Example 1: GGCMember.java



4/5/21, 10)50 PMIntermediate Programming

Page 38 of 185http://itec2150.gitlab.io/

Example 1: Employee.java

Example 1: Faculty.java

publicpublic classclass GGCMember
{
 privateprivate longlong id;
 privateprivate String firstName;
 privateprivate String lastName;

 publicpublic GGCMember(longlong id, String firstName, String lastName)
 {
  thisthis.id = id;
  thisthis.firstName = firstName;
  thisthis.lastName = lastName;
 }

 //getters and setters for ID, firstName and lastName (not shown)

 @Override
 publicpublic String toString()
 {
  returnreturn "GGCMember [ID=" + id + ", " + firstName + " " + lastName + "]";
 }
}

JAVA

publicpublic classclass Employee extendsextends GGCMember
{
 privateprivate String division;

 publicpublic Employee(longlong id, String firstName, String lastName, String division)
 {
  supersuper(id, firstName, lastName);
  thisthis.division = division;
 }

    //getter and setter for division (not shown)

 @Override
 publicpublic String toString()
 {
  returnreturn "Employee [ID=" + supersuper.getID() + ", division=" + division +
    ", " + supersuper.getFirstName() + " " + supersuper.getLastName() + "]";
 }
}

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 39 of 185http://itec2150.gitlab.io/

Example 1: Staff.java

Example 1: Student.java

publicpublic classclass Faculty extendsextends Employee
{
 privateprivate String dept;

 publicpublic Faculty(longlong id, String firstName, String lastName, String division, String dept)
 {
  supersuper(id, firstName, lastName, division);
  thisthis.dept = dept;
 }

    //getter and setter for dept (not shown)

 @Override
 publicpublic String toString()
 {
  returnreturn "Faculty [division=" + supersuper.getDivision() + ", dept=" + dept + ", " + supersuper.getFirstName() + 
" " + supersuper.getLastName() + "]";
 }
}

JAVA

publicpublic classclass Staff extendsextends Employee
{
 privateprivate String office;

 publicpublic Staff(longlong id, String firstName, String lastName, String division, String office)
 {
  supersuper(id, firstName, lastName, division);
  thisthis.office = office;
 }

 //getter and setter for office (not shown)

 @Override
 publicpublic String toString()
 {
  returnreturn "Staff [division=" + supersuper.getDivision() + ", office=" + office + ", " + supersuper.getFirstName() 
+ " " + supersuper.getLastName() + "]";
 }
}

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 40 of 185http://itec2150.gitlab.io/

Just like a student is also a GGC member, a Student object can also be "called" GGCMember and its reference can
be stored in a GGCMember variable. Similarly, a Faculty or Staff object can be "called" Employee or GGCMember
and its reference can be stored in either an Employee variable or a GGCMember variable. That is, an object can be
accessed via reference variable of its type or a reference variable of any of its superclass type(s). This gives us the
freedom to use one variable to hold references to any object of its subclasses. The following is an example.
Variable m is of the GGCMember type, it can hold references for Student objects, Staff objects and Faculty objects.

Example 1: GGCRoster.java

Variable m is a GGCMember variable. When line 5 is executed, the reference for a Student object is assigned to m.
At this point, m holds a reference to a Student object. The compiler allows the assignment of a Student object to a
GGCMember variable, because Student is a subclass of GGCMember. On line 8, m.toString() is implicitly invoked.
The decision on which toString method to invoke is determined when line 8 is executed (run time). Since m holds a

publicpublic classclass Student extendsextends GGCMember
{
 privateprivate String major;

 publicpublic Student(longlong id, String firstName, String lastName, String major) {
  supersuper(id, firstName, lastName);
  thisthis.major = major;
 }

 //getter and setter for major (not shown)

 @Override
 publicpublic String toString()
 {
  returnreturn "Student [ID=" + supersuper.getID() + ", major=" + major +
    ", " + supersuper.getFirstName() + " " + supersuper.getLastName() + "]";
 }
}

JAVA

 1| publicpublic classclass GGCRoster
 2| {
 3|   publicpublic staticstatic voidvoid main(String[] args)
 4|   {
 5|  GGCMember m;
 6|
 7|  m = newnew Student(90011022L, "John", "Smith", "MATH"); //m is bound to a Student object
 8|  System.out.println(m); //toString method for the Student object will be invoked
 9|
10|  m = newnew Staff(90003088L, "Rachel", "Morgan", "Academic Affairs", "SST"); //m is bound to a Staff object
11|  System.out.println(m); //toString method for the Staff object will be invoked
12|
13|  m = newnew Faculty(90021028L, "Linda", "Davis", "Academic Affairs", "CHEM"); //m is bound to a Faculty 
object
14|  System.out.println(m); //toString method for the Faculty object will be invoked
15|   }
16| }

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 41 of 185http://itec2150.gitlab.io/

reference to a Student object, the toString method defined in the Student class is invoked. This is called dynamic
binding. It means that the method call is bonded to the method body at runtime instead of compile time. This is
also known as late binding.

On line 11, m gets the reference to a Staff object, so when line 11 is executed and m.toString() is implicitly
invoked, the toString method defined in the Staff class is invoked.

On line 14, m gets the reference to a Faculty object, so when line 14 is executed and m.toString() is implicitly
invoked, the toString method defined in the Faculty class is invoked.

We can think of variable m as taking on different forms, sometimes referring to a Student object, sometimes
Faculty, and sometimes Staff. We call it polymorphism, which means that a reference variable can hold
references to different types of objects. For example, a reference variable could refer to objects that belong to any
of its sub-classes. We will learn later in this chapter, that a reference variable can also hold references to objects
belonging to different classes that implement the same interface.

The following is the output of the program.

3.4.2. Why Polymorphism is Useful?

You might be wondering why we need polymorphism. You might say that you could write a program (like the one
below) that does the same thing as the example above without using polymorphism.

Example 1: GGCRosterNoPolymorphism.java

Polymorphism will make programming convenient if your program needs to process a set of different but related
objects systematically, often in loops. The following is such an example.

Example 1: GGCRosterLoop.java

Student [ID=90011022, major=MATH, John Smith]
Staff [division=Academic Affairs, office=SST, Rachel Morgan]
Faculty [division=Academic Affairs, dept=CHEM, Linda Davis]

publicpublic classclass GGCRosterNoPolymorphism
{
 publicpublic staticstatic voidvoid main(String[] args)
 {
  Student m1 = newnew Student(90011022L, "John", "Smith", "MATH");
  System.out.println(m1);

  Staff m2 = newnew Staff(90003088L, "Rachel", "Morgan", "Academic Affairs", "SST");
  System.out.println(m2);

  Faculty m3 = newnew Faculty(90021028L, "Linda", "Davis", "Academic Affairs", "CHEM");
  System.out.println(m3);
 }
}

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 42 of 185http://itec2150.gitlab.io/

If your program needs to process a mixture of Student, Staff and Faculty objects, you can use an array of
GGCMember (their common superclass) to store them (as on line 3). Each array element (an indexed variable) is of
GGCMember type, so it can be bound to a Student object, a Staff object, or a Faculty object (line 8-10). In addition,
you can use a loop to process them (line 10-12). In the loop, variable m can be bound to any of the three types of
objects. Without Java’s polymorphism, you would not be able to store these different objects in one data structure
(e.g. an array) or process them conveniently in one loop.

Now let us look at another example. Suppose a pet clinic needs to maintain a list of their pet clients (cats and dogs).
It is necessary for them to put both types of pets in the same pool to manage scheduling. Instead of making two
unrelated classes Cat and Dog, we can make Cat and Dog both subclasses of a Pet class. This way, we can use a Pet
array to store both Cat and Dog objects. The following are the UML and code for this example.

Example 2: Pet.java

 1| publicpublic classclass GGCRosterLoop
 2| {
 3|   publicpublic staticstatic voidvoid main(String[] args)
 4|   {
 5|  GGCMember[] members = newnew GGCMember[3];
 6|
 7|  //Each indexed variable could be bound to any of the three types: Student, Staff, and Faculty
 8|  members[0] = newnew Student(90011022L, "John", "Smith", "MATH");
 9|  members[1] = newnew Staff(90003088L, "Rachel", "Morgan", "Academic Affairs", "SST");
10|  members[2] = newnew Faculty(90021028L, "Linda", "Davis", "Academic Affairs", "CHEM");
11|
12|  forfor (GGCMember m: members)
13|     {
14|   System.out.println(m);
15|  }
16|   }
17|}

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 43 of 185http://itec2150.gitlab.io/

Example 2: Cat.java

Example 2: Dog.java

publicpublic classclass Pet
{
    privateprivate String name;
    privateprivate String ownerName;
    privateprivate intint age;
    privateprivate String hairColor;

    publicpublic Pet(String name, String ownerName, intint age, String hairColor)
    {
        thisthis.name = name;
        thisthis.ownerName = ownerName;
        thisthis.age = age;
        thisthis.hairColor = hairColor;
    }

    //getters and setters for name, ownerName, age, and hairColor (not shown)
    @Override
    publicpublic String toString()
    {
        returnreturn "Pet[name=" + name + ", ownerName=" + ownerName +
          ", age=" + age + ", hairColor=" + hairColor + "]";
    }
}

JAVA

publicpublic classclass Cat extendsextends Pet
{
    privateprivate booleanboolean longHair;
    privateprivate booleanboolean clawed;

    publicpublic Cat(String name, String ownerName, intint age, String hairColor,
            booleanboolean longHair, booleanboolean clawed)
    {
        supersuper(name, ownerName, age, hairColor);
        thisthis.longHair = longHair;
        thisthis.clawed = clawed;
    }

    //getters and setters for longHair and clawed (not shown)

    @Override
    publicpublic String toString()
    {
        returnreturn supersuper.toString() +
          " Cat[longHair=" + longHair + ", clawed=" + clawed + "]";
    }
}

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 44 of 185http://itec2150.gitlab.io/

Example 2: PetCareClients.java

From these two examples, we have learned that we can make objects of different types related to each other
through a common superclass. Through this common superclass, we can take advantage of polymorphism and
store and process these objects systematically.

Another advantage of polymorphism is that it enables a method to be used for different types of data. The example
program below simulates that the pet clinic sends appointment reminders for the next day.

Example 2: PetCareClientsMethod.java

publicpublic classclass Dog extendsextends Pet
{
    privateprivate String breed;

    publicpublic Dog(String name, String ownerName, intint age, String hairColor,
            String breed)
    {
        supersuper(name, ownerName, age, hairColor);
        thisthis.breed = breed;
    }

    //getter and setter for breed (not shown)

 @Override
    publicpublic String toString()
    {
        returnreturn supersuper.toString() + " " + "Dog[breed=" + breed + "]";
    }
}

JAVA

publicpublic classclass PetCareClients
{
    publicpublic staticstatic voidvoid main(String[] args)
    {
     Pet[] pets = newnew Pet[5];

     pets[0] = newnew Cat("Fluffy", "Jane", 2, "orange", truetrue, falsefalse);
     pets[1] = newnew Dog("Coco", "Linda", 3, "brown", "Poodle");
     pets[2] = newnew Dog("Mongo", "William", 1, "white", "Bichon");
     pets[3] = newnew Dog("Patch", "Marta", 12, "spotty", "Dalmatian");
     pets[4] = newnew Cat("Petey", "Nicholas", 5, "brown", falsefalse, falsefalse);

     forfor (Pet p: pets)
     {
      System.out.println(p);
     }
    }
}

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 45 of 185http://itec2150.gitlab.io/

The method appointmentReminder uses polymorphism to adapt to different pet types. The data type of the first
parameter is Pet. When the method is invoked, the first argument for the method could be either Cat or Dog.
Without polymorphism, we would need two separate but almost the same methods (method overloading), one for
Dog and one for Cat (see below). If a pet hospital takes care of ten different types of pets, without polymorphism,
ten such methods would be needed and the only difference among them is the data type of the first parameter. It
would be very cumbersome. With polymorphism, one method is adequate, and it could "adapt" to different pet
types through dynamic binding.

Without Polymorphism of the first parameter, we would need to use method overloading, resulting in repetitive
code.

importimport java.util.Datejava.util.Date;

publicpublic classclass PetCareClientsMethod
{
    publicpublic staticstatic voidvoid main(String[] args)
    {
     Pet[] pets = newnew Pet[5];

     pets[0] = newnew Cat("Fluffy", "Jane", 2, "orange", truetrue, falsefalse);
     pets[1] = newnew Dog("Coco", "Linda", 3, "brown", "Poodle");
     pets[2] = newnew Dog("Mongo", "William", 1, "white", "Bichon");
     pets[3] = newnew Dog("Patch", "Marta", 12, "spotty", "Dalmatian");
     pets[4] = newnew Cat("Petey", "Nicholas", 5, "brown", falsefalse, falsefalse);

     Date date = newnew Date(); //The date (time as well) when this line is executed.
     longlong time = date.getTime(); //Total milliseconds from midnight 1/1/1970
     time += 24*60*60*1000;  //24 hours from now

     forfor (Pet p: pets)
     {
      appointmentReminder(p, time);
      time += 30*60*1000;  // add 30 mins to the time (30*60*1000 milliseconds)
     }
    }

    publicpublic staticstatic voidvoid appointmentReminder(Pet pet, longlong time)
    {
     Date date = newnew Date(time);
     System.out.println("Dear " + pet.getOwnerName() + ",");
     System.out.println("  A kind reminder that " + pet.getName() + "'s appointment is at " + date);
     System.out.println("See you soon!");
    }
}

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 46 of 185http://itec2150.gitlab.io/

3.5. Abstract Class
We will introduce abstract class with a concrete example. We will write a computer game and the game includes
different shapes, such as circles, rectangles, etc. In order to prevent the game space from getting too crowded, the
program needs to know the total area occupied by the shapes. As just stated from the previous section, in order to
manage all these different shapes in a systematic manner, it is good to connect all these shapes with a common
superclass. The following is the UML for this application.

The following is the superclass Shape. The class might contain other attributes, such as x and y coordinates and
speeds along x and y directions, but we will skip them to make the example just adequate to introduce the new
concept.

Example 3: Shape.java

    publicpublic staticstatic voidvoid appointmentReminder(Dog pet, longlong time)
    {
     Date date = newnew Date(time);
     System.out.println("Dear " + pet.getOwnerName() + ",");
     System.out.println("  A kind reminder that " + pet.getName() + "'s appointment is at " + date);
     System.out.println("See you soon!");
    }

    publicpublic staticstatic voidvoid appointmentReminder(Cat pet, longlong time)
    {
     Date date = newnew Date(time);
     System.out.println("Dear " + pet.getOwnerName() + ",");
     System.out.println("  A kind reminder that " + pet.getName() + "'s appointment is at " + date);
     System.out.println("See you soon!");
    }

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 47 of 185http://itec2150.gitlab.io/

You will notice a couple of new things in the above class definition. On the class header, there is a new key word
abstract. This key word also shows up in the method area, which has no method body. Remember that Shape is
the super class for different concrete shapes. Since the class Shape does not represent a concrete shape, there is
really no way to calculate the area. We use the key word abstract to represent that the method is not
implemented on purpose. As long as there is one abstract method, the class header must include the keyword
abstract to mark the class as abstract. If a class is abstract, you cannot instantiate the class, that is, you cannot
create an object (an instance) of this class.

You might be wondering that if the method area cannot be implemented in the Shape class, why do we include
the method at all? Without it, the Shape class could be just normal non-abstract class. To understand the purpose
of an abstract class, let us look at the following definition for the subclass Circle. Note that we do not want Circle to
be an abstract class, since we will need to create Circle objects in the game. That is why we do not include the
keyword abstract on the class header.

Example 3: Circle.java (Incomplete)

publicpublic abstractabstract classclass Shape
{
    privateprivate String color;
    privateprivate booleanboolean filled;

    publicpublic Shape(String color, booleanboolean filled)
    {
  supersuper();
  thisthis.color = color;
  thisthis.filled = filled;
 }

 //getters and setters for color and filled (not shown)

 @Override
 publicpublic String toString()
 {
  returnreturn "[color=" + color + ", filled=" + filled + "]";
 }

 publicpublic abstractabstract doubledouble area();
}

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 48 of 185http://itec2150.gitlab.io/

You will notice that there is no method definition for area in the Circle class. In an IDE such as Eclipse or IntelliJ,
you will see a compile error at the class header. See the following image:

As shown above, the compiler reports an error if an abstract method is not overridden with an actual
implementation by a non-abstract class. This is the reason for including the abstract method area in the super
class Shape. It "forces" all non-abstract subclasses to provide an actual definition for the method.

If you click on the first quick fix, you will get a method stub for overriding the method area as shown by the last
method in the following code:

Example 3: Circle.java (Almost Complete)

publicpublic classclass Circle extendsextends Shape
{
    privateprivate intint x, y;
    privateprivate intint radius;

 publicpublic Circle(String color, booleanboolean filled, intint x, intint y, intint radius)
 {
  supersuper(color, filled);
  thisthis.x = x;   thisthis.y = y;  thisthis.radius = radius;
 }

 //getters and setters for x, y, and radius (not shown)

 @Override
 publicpublic String toString()
 {
  returnreturn "Circle [@(" + x + ", " + y + "), r: " + radius + "] " + supersuper.toString();
 }
}

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 49 of 185http://itec2150.gitlab.io/

We will replace the auto-generated stub for method area with the following actual implementation.

Example 3: The area method in Circle.java

The following is the class definition for another subclass Rectangle. We will skip other shapes (e.g. triangle) to
prevent the example taking up too much space but still adequate for introducing the concept.

Example 3: Rectangle.java

publicpublic classclass Circle extendsextends Shape
{
    privateprivate intint x, y;
    privateprivate intint radius;

 publicpublic Circle(String color, booleanboolean filled, intint x, intint y, intint radius)
 {
  supersuper(color, filled);
  thisthis.x = x;   thisthis.y = y;  thisthis.radius = radius;
 }

 //getters and setters for x, y, and radius (not shown)

 @Override
 publicpublic String toString()
 {
  returnreturn "Circle [@(" + x + ", " + y + "), r: " + radius + "] " + supersuper.toString();
 }

 @Override
 publicpublic doubledouble area()
 {
  // TODO Auto-generated method stub
  returnreturn 0;
 }
}

JAVA

 @Override
 publicpublic doubledouble area()
 {
  returnreturn Math.PI * radius * radius;
 }

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 50 of 185http://itec2150.gitlab.io/

3.5.1. Polymorphism through Abstract Class

Except that you cannot instantiate an abstract class (cannot create an object of the class), you use an abstract class
the same way as a regular super class. The following code shows that we can store objects of different types (Circle
and Rectangle, both Shape’s subclasses) in a Shape array and process them in a systematic manner because of
polymorphism.

Example 3: AreasOfAllShapes.java

publicpublic classclass Rectangle extendsextends Shape
{
    privateprivate intint x, y;
    privateprivate intint width, height;

 publicpublic Rectangle(String color, booleanboolean filled, intint x, intint y, intint width, intint height)
 {
  supersuper(color, filled);
  thisthis.x = x;
  thisthis.y = y;
  thisthis.width = width;
  thisthis.height = height;
 }

 //getters and setters for x, y, width, and height (not shown)

 @Override
 publicpublic doubledouble area()
 {
  returnreturn width*height;
 }

 @Override
 publicpublic String toString()
 {
  returnreturn "Rectangle [@ (" + x + ", " + y + "), w: " + width + ", h: " + height + "] " + 
supersuper.toString();
 }
}

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 51 of 185http://itec2150.gitlab.io/

Output of the program:

3.5.2. An Experiment: Removing the Abstract Methods from the Super Class

The previous example shows that abstract methods, even though not implemented in the super class, will force all
the non-abstract subclasses to implement them. Here we will do an experiment to help you understand the
abstract method from another angle.

You might be wondering what could happen if we just make the super class Shape non-abstract by removing the
abstract method area altogether. We can simply implement the area method in the subclasses Circle and
Rectangle. If we remove the abstract method area from Shape and make it a regular class while keeping the
method area in Circle and that in Rectangle intact, we will get the following compile error.

 1| publicpublic classclass AreasOfAllShapes
 2| {
 3|  publicpublic staticstatic voidvoid main(String[] args)
 4|  {
 5|   Shape[] shapes = newnew Shape[3];
 6|
 7|   shapes[0] = newnew Circle("blue", truetrue, 30, 30, 5);  // center at (30, 30), radius 5
 8|   shapes[1] = newnew Rectangle("orange", falsefalse, 50, 100, 30, 15); // upper-left corner (50, 100), width 
30, height 15
 9|   shapes[2] = newnew Circle("red", falsefalse, 250, 250, 20); // center at (250, 250), radius 20
10|
11|   intint area = 0;
12|   forfor (Shape s: shapes)
13|         {
14|    area += s.area();
15|   }
16|   System.out.println("Total area of the shapes: " + area);
17|  }
18| }

JAVA

Total area of the shapes: 1784



4/5/21, 10)50 PMIntermediate Programming

Page 52 of 185http://itec2150.gitlab.io/

We will get a compile error on line 14 with the method invocation s.area(). There must be a area method in the
Shape class in order to get the code compiled. From this experiment, we can see that the abstract method has its
syntactic purpose and must be included in the super class in order for polymorphism to work.

We can also confirm that variable m is bound to different objects during run time (thus called dynamic binding)
but not at compile time. In fact, for most cases, it is impossible to know what a variable is bound to at compile
time.

3.6. Interface
The syntax for defining an interface is very similar to that for defining a class. Interface contains only public
abstract method(s). It does not contain any attributes and therefore does not contain any constructors (nothing to
initialize). The following is the interface definition for Comparable (included in the standard Java library
https://docs.oracle.com/en/java/javase/14/docs/api/java.base/java/lang/Comparable.html). We can see that instead of
class, the keyword on the header is interface. For method(s), the keywords public and abstract are skipped,
since all methods are public and abstract.

Interface Comparable (Contained in the Java Library)

Comparing Abstract Classes and Interfaces: You may say that Interface is really a special abstract class that only
contains abstract methods. In fact, this is not correct. The interface mechanism is really "in parallel" with the class
inheritance mechanism. It is meant for a class to "implement" the methods. A class can extend a super class or
implement an interface. It can also extend a super class and implements an interface at the same time. An abstract
class is still a class. That is, it is with the class inheritance mechanism that is "in parallel" with the interface
implementation mechanism.

For example, the following class implements Comparable. To implement an interface, (1) the class should be
marked on the header as "implements the interface" and (2) the abstract methods in the interface will need to be
overridden, otherwise they are "inherited" as is as abstract methods.

Example 4: Circle.java

publicpublic interfaceinterface Comparable<T>
{
 intint compareTo(T o);
 /*Compares this object with the specified object for order. Returns a negative integer, zero, or a positive 
integer as this object is less than, equal to, or greater than the specified object.*/
}

JAVA

https://docs.oracle.com/en/java/javase/14/docs/api/java.base/java/lang/Comparable.html


4/5/21, 10)50 PMIntermediate Programming

Page 53 of 185http://itec2150.gitlab.io/

You can see that this is the same Circle class as the last section, but with two things added:

At the end of the class header, implements Comparable<Shape> is added.

A compareTo method is added to the class definition. This is similar to override a method in a super class. The
compareTo method returns a positive integer 1 if the Circle object’s area is great than the parameter o's area,
returns a negative integer -1 if less than, and returns 0 if equal.

We could do the same for the Rectangle class by making it implement the Comparable interface:

Example 4: Rectangle.java

publicpublic classclass Circle extendsextends Shape implementsimplements Comparable<Shape>
{
    privateprivate intint x, y;
    privateprivate intint radius;

 publicpublic Circle(String color, booleanboolean filled, intint x, intint y, intint radius)
 {
  supersuper(color, filled);
  thisthis.x = x;   thisthis.y = y;  thisthis.radius = radius;
 }

    //getters and setters for x, y and radius (not shown)

 @Override
 publicpublic String toString()
 {
  returnreturn "Circle [@(" + x + ", " + y + "), r: " + radius + "] " + supersuper.toString();
 }

 @Override
 publicpublic doubledouble area()
 {
  returnreturn Math.PI * radius * radius;
 }

 @Override
 publicpublic intint compareTo(Shape o)
 {
  ifif (thisthis.area() > o.area())
   returnreturn 1;
  elseelse ifif (thisthis.area() < o.area())
   returnreturn -1;
  elseelse
   returnreturn 0;
 }
}

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 54 of 185http://itec2150.gitlab.io/

Example 4: Shape.java

Both the Circle and Rectangle classes have no compilation errors. You can see that a class can extend a super class
and implement an interface at the same time. A class can only extend one super-class, however, a class can
implement more than one interface, which we will talk about later.

Now let’s look at the following program, which intends to use the compareTo methods in Circle and Rectangle to
determine the shape with the maximum area. Unfortunately, it contains a compile error.

publicpublic classclass Rectangle extendsextends Shape implementsimplements Comparable<Shape>
{
    privateprivate intint x, y;
    privateprivate intint width, height;

 publicpublic Rectangle(String color, booleanboolean filled, intint x, intint y, intint width, intint height)
 {
  supersuper(color, filled);
  thisthis.x = x;
  thisthis.y = y;
  thisthis.width = width;
  thisthis.height = height;
 }

    //getters and setters for x, y, width and height (not shown)

 @Override
 publicpublic String toString()
 {
  returnreturn "Rectangle [@ (" + x + ", " + y + "), w: " + width + ", h: " + height + "] " + 
supersuper.toString();
 }

 @Override
 publicpublic doubledouble area()
 {
  returnreturn width*height;
 }

 @Override
 publicpublic intint compareTo(Shape o)
 {
  ifif (thisthis.area() > o.area())
   returnreturn 1;
  elseelse ifif (thisthis.area() < o.area())
   returnreturn -1;
  elseelse
   returnreturn 0;
 }
}

JAVA

The same as Shape.java in Example 3
JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 55 of 185http://itec2150.gitlab.io/

There is an error for p.compareTo(maxShape), since the variable p's type is Shape and there is no compareTo

method defined in the Shape class. This is a similar error as the one we see in the experiment for abstract class.
The super class Shape needs to contain the method in order for the above code to be compiled.

To fix this problem, we will implement the compareTo method in the Shape class, instead of in the Circle class
and the Rectangle class. This way, we only need to implement the method once and it will be inherited by all the
subclasses (Circle and Rectangle). We will keep the Circle and Rectangle classes the same as the previous section
(without the compareTo method). See below for the new Shape class.

The following is the UML that captures the relationship among the classes and the interface in Example 5. The
dotted line arrow represents the implementation relationship.



4/5/21, 10)50 PMIntermediate Programming

Page 56 of 185http://itec2150.gitlab.io/

Example 5: Shape.java



4/5/21, 10)50 PMIntermediate Programming

Page 57 of 185http://itec2150.gitlab.io/

Example 5: Circle.java

Example 5: Rectangle.java

Example 5: MaxShape.java

When you run MaxShape, the program will display the following:

publicpublic abstractabstract classclass Shape implementsimplements Comparable<Shape>
{
    privateprivate String color;
    privateprivate booleanboolean filled;

    publicpublic Shape(String color, booleanboolean filled)
    {
  supersuper();
  thisthis.color = color;
  thisthis.filled = filled;
 }

    //getters and setters for color and filled (not shown)

 publicpublic abstractabstract doubledouble area();

 @Override
 publicpublic String toString()
 {
  returnreturn "[color=" + color + ", filled=" + filled + "]";
 }

 @Override
 publicpublic intint compareTo(Shape o)
 {
  ifif (thisthis.area() > o.area())
   returnreturn 1;
  elseelse ifif (thisthis.area() < o.area())
   returnreturn -1;
  elseelse
   returnreturn 0;
 }
}

JAVA

The same as Circle.java in Example 3
JAVA

The same as Circle.java in Example 3
JAVA

The same as MaxShape.java in Example 4
JAVA

The shape with maximum area is: Circle [@(250, 250), r: 20.0] [color=red, filled=false]



4/5/21, 10)50 PMIntermediate Programming

Page 58 of 185http://itec2150.gitlab.io/

Let us look at the Shape class more carefully. You will see that the method area is abstract. You might wonder
whether it is OK for the compareTo method to invoke the area method. It is OK because an abstract class cannot
be instantiated. The abstract method area will be overridden by the subclasses Circle and Rectangle and the
compareTo method will be inherited by the subclasses Circle and Rectangle. In the loop (line 11-16) in the main
method, variables p and maxShape are bound to either a Circle or Rectangle object at any point during execution.
The inherited method compareTo will invoke the proper area method defined in either Circle or Rectangle.

This really shows another advantage of using abstract classes. It holds concrete methods that can be implemented
so that the sub-classes do not have to implement them and can inherit them as they are. It can also hold abstract
methods that it cannot implement but will "force" all the non-abstract subclasses to implement their own version.

3.6.1. A Class Can Implement Multiple Interfaces

Even though a class can only extend one and only one super class, a class can implement multiple interfaces. We
will make the Shape class implement two interfaces Comparable and Animation.

The following is the Animation interface that contains two public abstract methods talk and flipRight.

Example 6: Animation.java

When a class implements more than one interface, the interface names are separated with comma(s) on the class
header.

Example 6: Shape.java

publicpublic interfaceinterface Animation
{
 voidvoid talk(); //Simulate talking by displaying (printing) a message
    voidvoid flipRight(); //flip to the right (mirror)
}

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 59 of 185http://itec2150.gitlab.io/

The Shape class only implements the talk method of the two methods in the Animation interface. The flipRight

method is not implemented in Shape, so it is "inherited" from the interface as is, that is, it is still an abstract
method in the Shape class. It is really not possible to implement the flipRight method here, since how a shape flips
depends on what the actual shape it is. This method will need to be implemented in the concrete shape classes,
Circle and Rectangle (see below).

The following is the UML that captures the relationship among the classes and the interface in Example 6.

publicpublic abstractabstract classclass Shape implementsimplements Comparable<Shape>, Animation
{
    privateprivate String color;
    privateprivate booleanboolean filled;

    publicpublic Shape(String color, booleanboolean filled)
    {
  supersuper();
  thisthis.color = color;
  thisthis.filled = filled;
 }

    //getters and setters for color and filled (not shown)

 publicpublic abstractabstract doubledouble area();

 @Override
 publicpublic String toString()
 {
  returnreturn "[color=" + color + ", filled=" + filled + "]";
 }

 @Override
 publicpublic intint compareTo(Shape o)
 {
  ifif (thisthis.area() > o.area())
   returnreturn 1;
  elseelse ifif (thisthis.area() < o.area())
   returnreturn -1;
  elseelse
   returnreturn 0;
 }

 @Override
 publicpublic voidvoid talk()
 {
  System.out.println("I am " + thisthis.toString());
 }
}

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 60 of 185http://itec2150.gitlab.io/

Example 6: Circle.java

When a circle flips to the right, it flips on the vertical tangent on the right, so its new x coordinate is the current x
coordinate plus 2 * radius.

Example 6: Rectangle.java

publicpublic classclass Circle extendsextends Shape
{
    privateprivate intint x, y;
    privateprivate intint radius;

 publicpublic Circle(String color, booleanboolean filled, intint x, intint y, intint radius)
 {
  supersuper(color, filled);
  thisthis.x = x;   thisthis.y = y;  thisthis.radius = radius;
 }

 //getters and setters for x, y, and radius (not shown)

 @Override
 publicpublic String toString()
 {
  returnreturn "Circle [@(" + x + ", " + y + "), r: " + radius + "] " + supersuper.toString();
 }

 @Override
 publicpublic doubledouble area()
 {
  returnreturn Math.PI * radius * radius;
 }

 @Override
 publicpublic voidvoid flipRight()
 {
  x = x + 2 * radius;
 }
}

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 61 of 185http://itec2150.gitlab.io/

When a rectangle flips to the right, it flips on the right vertical edge, the original upper right corner becomes the
upper left corner for the rectangle at the new location. Therefore, the new x coordinate of the rectangle is the
original value plus the width.

The code below will utilize polymorphism to let each shape object (which could be Circle or Rectangle) talk, flip
right, and then talk again.

Example 6: AnimateShapes.java

publicpublic classclass Rectangle extendsextends Shape
{
    privateprivate intint x, y;
    privateprivate intint width, height;

 publicpublic Rectangle(String color, booleanboolean filled, intint x, intint y, intint width, intint height)
 {
  supersuper(color, filled);
  thisthis.x = x;
  thisthis.y = y;
  thisthis.width = width;
  thisthis.height = height;
 }

    //getters and setters for x, y, width, height

 @Override
 publicpublic String toString()
 {
  returnreturn "Rectangle [@ (" + x + ", " + y + "), w: " + width + ", h: " + height + "] " + 
supersuper.toString();
 }

 @Override
 publicpublic doubledouble area()
 {
  returnreturn width*height;
 }

 @Override
 publicpublic voidvoid flipRight()
 {
  x = x + width;
 }
}

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 62 of 185http://itec2150.gitlab.io/

The following is the output of the program. After flipping right, a circle with center at (30, 30) and radius 5
becomes a circle at (40, 30) and radius not changed; a rectangle with the upper-left corner at (50, 100) with width
30 becomes a rectangle at (80, 100) and dimension not changed; and so on.

3.6.2. Polymorphism through Interface

The polymorphism examples so far are all through super classes. In this section, we will see the amazing power of
polymorphism through interface, which enables systematically storing and processing seemingly unrelated
objects.

First, let us look at a new class, Text, that is very different from Shape. Its only relationship to Shape is that it also
implements the Animation interface.

Example 6: Text.java

publicpublic classclass AnimateShapes
{
 publicpublic staticstatic voidvoid main(String[] args)
 {
  Shape[] shapes = newnew Shape[3];

  shapes[0] = newnew Circle("blue", truetrue, 30, 30, 5);  // center at (30, 30), radius 5
  shapes[1] = newnew Rectangle("orange", falsefalse, 50, 100, 30, 15); // upper-left corner (50, 100), width 30, 
height 15
  shapes[2] = newnew Circle("red", falsefalse, 250, 250, 20); // center at (250, 250), radius 20

  forfor (Shape p: shapes)
  {
   p.talk();
   p.flipRight();
   p.talk();
   System.out.println();
  }
 }
}

JAVA

I am Circle [@(30, 30), r: 5] [color=blue, filled=true]
I am Circle [@(40, 30), r: 5] [color=blue, filled=true]

I am Rectangle [@ (50, 100), w: 30, h: 15] [color=orange, filled=false]
I am Rectangle [@ (80, 100), w: 30, h: 15] [color=orange, filled=false]

I am Circle [@(250, 250), r: 20] [color=red, filled=false]
I am Circle [@(290, 250), r: 20] [color=red, filled=false]



4/5/21, 10)50 PMIntermediate Programming

Page 63 of 185http://itec2150.gitlab.io/

Both methods in the Animation interface are implemented. For the Text class, flipping to the right means reversal
of the string text.

Example 6: AnimateShapesTexts.java

publicpublic classclass Text implementsimplements Animation
{
 privateprivate String text;

 publicpublic Text(String text)
 {
  thisthis.text = text;
 }

    //getter and setter for text (not shown)

 @Override
 publicpublic String toString()
 {
  returnreturn "Text [text=" + text + "]";
 }

 @Override
 publicpublic voidvoid talk()
 {
  System.out.println("I am " + thisthis.toString());
 }

 @Override
 publicpublic voidvoid flipRight()
 {
     //reverse the text
  String newText = "";
  forfor (intint i = text.length()-1; i >= 0; i--)
  {
   newText = newText + text.charAt(i);
  }
  text = newText;
 }
}

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 64 of 185http://itec2150.gitlab.io/

The code above demonstrates that an interface can be used as a data type. In a sense, a class implementing an
interface is similar to a subclass extending a super class. An interface variable can be used to hold references to
objects of any class that implements the interface. Both the Circle and Rectangle classes implement the Animation
interface through their super class Shape, so the reference to a Circle or Rectangle object can be stored in an
Animation variable. The Text class also implements the Animation interface, so the references to a Text object can
also be stored in an Animation variable.

In the example above, variable a is of type Animation (an interface). It is first assigned to the reference to a Circle
object, then a Rectangle object, and last a Text object. The following is the output of the program.

Since Circle, Rectangle, and Text all implement Animation, we can store the references to their objects in an
Animation array and process them systematically in a loop (see the code below). For a program that manages a
large number of objects, ability to store them in an array and process them with a loop in a systematic manner
will make programming manageable.

Example 6: AnimateShapesTexts.java

publicpublic classclass AnimateShapesTexts
{
 publicpublic staticstatic voidvoid main(String[] args)
 {
  Animation a;

  a = newnew Circle("blue", truetrue, 30, 30, 5);  // center at (30, 30), radius 5
  a.talk();
  a.flipRight();
  a.talk();

  a = newnew Rectangle("orange", falsefalse, 50, 100, 30, 15); // upper-left corner (50, 100), width 30, height 
15
  a.talk();
  a.flipRight();
  a.talk();

  a = newnew Text("hello");
  a.talk();
  a.flipRight();
  a.talk();
 }
}

JAVA

I am Circle [@(30, 30), r: 5] [color=blue, filled=true]
I am Circle [@(40, 30), r: 5] [color=blue, filled=true]
I am Rectangle [@ (50, 100), w: 30, h: 15] [color=orange, filled=false]
I am Rectangle [@ (80, 100), w: 30, h: 15] [color=orange, filled=false]
I am Text [text=hello]
I am Text [text=olleh]



4/5/21, 10)50 PMIntermediate Programming

Page 65 of 185http://itec2150.gitlab.io/

This program has exactly the same output as the previous program that does not use a loop. The program creates
an Animation array shapesAndTexts with size 3. Each element of the array can store the reference to an object of
any class that implements the Animation interface. The references to a Circle object, a Rectangle object, and a Text
object are assigned to each element of the array. The program then uses a for-each loop to process the array.

Classes that are very different from each other can relate to each other through the common interface they
implement. It is as if that they have a common super class. Interface makes it very convenient for us to take
advantage of polymorphism to store very different objects in a data structure (e.g. an array) and process them in a
systematic manner.

3.6.3. Interface Inheritance

An interface, just like a class, can have a parent interface. That is, an interface can extend a parent interface. For
example, the FullAnimation interface below is a child (sub) interface of the parent (super) interface Animation.
The FullAnimation interface inherits the two abstract methods (talk and flipRight) from Animation and adds three
new abstract methods flipLeft, flipUp and flipDown.

Example 7: FullAnimation.java

Example 7: Animation.java

publicpublic classclass AnimateShapesTextsLoop
{
 publicpublic staticstatic voidvoid main(String[] args)
 {
  Animation[] shapesAndTexts = newnew Animation[3];

  shapesAndTexts[0] = newnew Circle("blue", truetrue, 30, 30, 5);  // center at (30, 30), radius 5
  shapesAndTexts[1] = newnew Rectangle("orange", falsefalse, 50, 100, 30, 15); // upper-left corner (50, 100), 
width 30, height 15
  shapesAndTexts[2] = newnew Text("hello");

  forfor (Animation a: shapesAndTexts)
  {
   a.talk();
   a.flipRight();
   a.talk();
   System.out.println();
  }
 }
}

JAVA

publicpublic interfaceinterface FullAnimation extendsextends Animation
{
    voidvoid flipLeft(); //flip to the left (mirror)
    voidvoid flipUp(); //flip to the left (mirror)
    voidvoid flipDown(); //flip to the left (mirror)
}

JAVA

The same as Animation.java in Example 6
JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 66 of 185http://itec2150.gitlab.io/

We modified the abstract class Shape so that it implements the FullAnimation instead of Animation. From the code
below, we can see that only the talk method is implemented, the other four methods, flipRight, flipLeft, flipUp, and
flipDown, will be implemented in the concrete subclasses of Shape, Circle and Rectangle.

Example 7: Shape.java

The following is the UML that captures the relationship among the classes and the interface in Example 7.

publicpublic abstractabstract classclass Shape implementsimplements Comparable<Shape>, FullAnimation
{
    privateprivate String color;
    privateprivate booleanboolean filled;

    publicpublic Shape(String color, booleanboolean filled)
    {
  supersuper();
  thisthis.color = color;
  thisthis.filled = filled;
 }

    //getters and setters for color and filled (not shown)

 publicpublic abstractabstract doubledouble area();

 @Override
 publicpublic String toString()
 {
  returnreturn "[color=" + color + ", filled=" + filled + "]";
 }

 @Override
 publicpublic intint compareTo(Shape o)
 {
  ifif (thisthis.area() > o.area())
   returnreturn 1;
  elseelse ifif (thisthis.area() < o.area())
   returnreturn -1;
  elseelse
   returnreturn 0;
 }

 @Override
 publicpublic voidvoid talk()
 {
  System.out.println("I am " + thisthis.toString());
 }
}

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 67 of 185http://itec2150.gitlab.io/

Since the Circle class is a non-abstract class, it needs to implement all the abstract methods in FullAnimation but
not implemented yet in Shape.

Example 7: Circle.java



4/5/21, 10)50 PMIntermediate Programming

Page 68 of 185http://itec2150.gitlab.io/

You can do an experiment. If you remove the flipRight method, there will be a compile error. This just confirms
that flipRight is inherited by FullAnimation from Animation and is part of the FullAnimaton interface.

The following is the updated Rectangle class:

Example 7: Rectangle.java

publicpublic classclass Circle extendsextends Shape
{
    privateprivate intint x, y;
    privateprivate intint radius;

 publicpublic Circle(String color, booleanboolean filled, intint x, intint y, intint radius)
 {
  supersuper(color, filled);
  thisthis.x = x;   thisthis.y = y;  thisthis.radius = radius;
 }

 //getters and setters for x, y, and radius

 @Override
 publicpublic String toString()
 {
  returnreturn "Circle [@(" + x + ", " + y + "), r: " + radius + "] " + supersuper.toString();
 }

 @Override
 publicpublic doubledouble area()
 {
  returnreturn Math.PI * radius * radius;
 }

 @Override
 publicpublic voidvoid flipRight()
 {
  x = x + 2 * radius;
 }

 @Override
 publicpublic voidvoid flipLeft()
 {
  x = x - 2 * radius;
 }

 @Override
 publicpublic voidvoid flipUp()
 {
  y = y - 2 * radius;
 }

 @Override
 publicpublic voidvoid flipDown()
 {
  y = y + 2 * radius;
 }
}

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 69 of 185http://itec2150.gitlab.io/

The following code is very similar to an example described before, but in addition to talk and flip right, each shape
can also flip left, up, and down.

Example 7: AnimateShapes.java

publicpublic classclass Rectangle extendsextends Shape
{
    privateprivate intint x, y;
    privateprivate intint width, height;

 publicpublic Rectangle(String color, booleanboolean filled, intint x, intint y, intint width, intint height)
 {
  supersuper(color, filled);
  thisthis.x = x;
  thisthis.y = y;
  thisthis.width = width;
  thisthis.height = height;
 }

    //getters and setters for x, y, width, and height (not shown)

 @Override
 publicpublic String toString()
 {
  returnreturn "Rectangle [@ (" + x + ", " + y + "), w: " + width + ", h: " + height + "] " + 
supersuper.toString();
 }

 @Override
 publicpublic doubledouble area()
 {
  returnreturn width*height;
 }

 @Override
 publicpublic voidvoid flipRight()
 {
  x = x + width;
 }

 @Override
 publicpublic voidvoid flipLeft()
 {
  x = x - width;
 }

 @Override
 publicpublic voidvoid flipUp()
 {
  y = y - height;
 }

 @Override
 publicpublic voidvoid flipDown()
 {
  y = y + height;
 }
}

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 70 of 185http://itec2150.gitlab.io/

The following is the output of the program above. We can see that if a shape flip right and then left, it returns to
the original location. The same for flipping up and then down.

3.7. Summary
Polymorphism can be used to connect different classes through a common super class or a common interface they
implement, allowing objects belonging to different classes to be stored and processed systematically.

3.8. Key Terms

publicpublic classclass AnimateShapes
{
 publicpublic staticstatic voidvoid main(String[] args)
 {
  Shape[] shapes = newnew Shape[3];

  shapes[0] = newnew Circle("blue", truetrue, 30, 30, 5);  // center at (30, 30), radius 5
  shapes[1] = newnew Rectangle("orange", falsefalse, 50, 100, 30, 15); // upper-left corner (50, 100), width 30, 
height 15
  shapes[2] = newnew Circle("red", falsefalse, 250, 250, 20); // center at (250, 250), radius 20

  forfor (Shape p: shapes)
  {
   p.talk();
   p.flipRight();
   p.talk();
   p.flipLeft();
   p.talk();
   p.flipUp();
   p.talk();
   p.flipDown();
   p.talk();
   System.out.println();
  }
 }
}

JAVA

I am Circle [@(30, 30), r: 5] [color=blue, filled=true]
I am Circle [@(40, 30), r: 5] [color=blue, filled=true]
I am Circle [@(30, 30), r: 5] [color=blue, filled=true]
I am Circle [@(30, 20), r: 5] [color=blue, filled=true]
I am Circle [@(30, 30), r: 5] [color=blue, filled=true]

I am Rectangle [@ (50, 100), w: 30, h: 15] [color=orange, filled=false]
I am Rectangle [@ (80, 100), w: 30, h: 15] [color=orange, filled=false]
I am Rectangle [@ (50, 100), w: 30, h: 15] [color=orange, filled=false]
I am Rectangle [@ (50, 85), w: 30, h: 15] [color=orange, filled=false]
I am Rectangle [@ (50, 100), w: 30, h: 15] [color=orange, filled=false]

I am Circle [@(250, 250), r: 20] [color=red, filled=false]
I am Circle [@(290, 250), r: 20] [color=red, filled=false]
I am Circle [@(250, 250), r: 20] [color=red, filled=false]
I am Circle [@(250, 210), r: 20] [color=red, filled=false]
I am Circle [@(250, 250), r: 20] [color=red, filled=false]



4/5/21, 10)50 PMIntermediate Programming

Page 71 of 185http://itec2150.gitlab.io/

Dynamic Binding: In dynamic binding, the method call is bonded to the method body at runtime. This is also
known as late binding.

Polymorphism: Polymorphism means that a reference variable can hold references to different types of objects.
For example, a reference variable could refer to objects that belong to any of its subclasses. A reference variable
can also hold references to objects belonging to different classes that implement the same interface.

Abstract Method: An abstract method is a method that is declared but contains no implementation.

Non-instantiable: A class is non-instantiable if objects of that class can be created.

Abstract Class: A class that contains abstract methods is an abstract class. The class header of an abstract class
needs to contain the keyword abstract. Abstract classes may not be instantiated and require subclasses to provide
implementations for the abstract methods.

Interface: An interface contains no attributes but only public abstract methods. An interface cannot be
instantiated.

Interface Implementation: A class implements an interface by providing implementations of at least one of the
abstract methods contained in the interface.

Interface Inheritance: There is also inheritance relationship among interfaces, just like among classes.

Dynamic Binding: In dynamic binding, the method call is bonded to the method body at runtime. This is also
known as late binding.

Polymorphism: Polymorphism means that a reference variable can hold references to different types of objects.
For example, a reference variable could refer to objects that belong to any of its subclasses. A reference variable
can also hold references to objects belonging to different classes that implement the same interface.

Abstract Method: An abstract method is a method that is declared, but contains no implementation.

Non-instantiable: A class is non-instantiable if objects of that class can be created.

Abstract Class: A class that contains abstract methods is an abstract class. The class header of an abstract class
needs to contain the keyword abstrast. Abstract classes may not be instantiated, and require subclasses to provide
implementations for the abstract methods.

Interface: An interface contains no attributes but only public abstract methods. An interface cannot be
instantiated.

Interface Implementation: A class implments an interface by providing implementations of at least one of the
abstract methods contained in the interface.

Interface Inheritance: There is also inheritance relationship among interfaces, just like among classes.



4/5/21, 10)50 PMIntermediate Programming

Page 72 of 185http://itec2150.gitlab.io/

3.9. Exercises

3.9.1. Exercise 1

Write a program to store the information for a number of different farm animals in an array or array list and then
display the sound the animals make.

SuperClass FarmAnimal

Attributes: name, gender, weight, and age.

Methods:

Constructor

getters and setters

*_toString method that returns a string including all attributes.

An abstract method feedLoadingSchedule that does not have any parameters and returns a string. It
returns the time(s) to load feeds each day. It is better for this method to be abstract, since only a concrete
animal type can actually know the time(s).

Subclasses Chicken, Cow, Duck.

Attributes: They should each contain an attribute sound.

Methods:

Each contain a constructor and getter/setter methods.

Override the toString method.

Override the feedLoadingSchedule method.

Hint: For both the toString and feedLoadingSchedule methods, use the output of the program (see
below) to determine the format of the string to return.

Application: Write a program called MyFarm.

Create the following six objects, store them in a FarmAnimal array or array list.

Print out their information, including their sounds.

Print out the feeding schedule for each animal.

The following is the output of the program.



4/5/21, 10)50 PMIntermediate Programming

Page 73 of 185http://itec2150.gitlab.io/

3.9.2. Exercise 2

Write a program to process different objects that can fly in a systematic mantter through the same interface they
implement.

Interface Flight: Contain only one void method fly() (no parameters).

Two non-abstract classes Airplane and Bird that implement the Flight interface.

Airplane class:

Three attributes: model and year built

Bird class:

One attribute: type

Besides the contructors and getters/setters, both the Airplane and Bird classes should implment the fly method.
The Airplane’s fly method should print "I’m an airplane that relies on an engine to fly." The Bird’s fly method
shoud print "I’m a bird who flaps wings to fly." Each should also include a toString() method.

Hint: For both the toString and feedLoadingSchedule methods, use the output of the program (see below) to
determine the format of the string to return.

Appication program ThingsThatFly

Create one Airplane object and two Bird objects. The program must store these objects in one array or array
list.

The program must use a loop to print the objects and how they fly. Your program should have the following
output:

3.9.3. Exercise 3

Duck Quack Quack [name=Donald, gender=male, weight=3.2, age=5]
Duck Quack Quack [name=Cheese, gender=female, weight=3.6, age=5]
Cow Moo Moo [name=Molly, gender=female, weight=1600.0, age=3]
Chicken Cock-a-Doodle-doo [name=Albert, gender=male, weight=1.6, age=2]
Chicken Cluck Cluck [name=Amelia, gender=female, weight=1.8, age=4]
Chicken Cluck Cluck [name=Dixie, gender=female, weight=1.7, age=4]
Donald: 8am-12pm-6pm
Cheese: 8am-12pm-6pm
Molly: 6am-4pm
Albert: 8am-4pm
Amelia: 8am-4pm
Dixie: 8am-4pm

Airplane [model=Boeing 747, year=2016]: I'm an airplane that relies on an engine to fly.
Bird [type=Eagle]: I'm a bird who flaps my wings to fly.
Bird [type=Hummingbird]: I'm a bird who flaps my wings to fly.



4/5/21, 10)50 PMIntermediate Programming

Page 74 of 185http://itec2150.gitlab.io/

This exercise extends Exercise 2. Define another interface Movement that extends the interface Flight from
Exercise 2. It contains two new abstract methods walk() and jump(). Both have no parameters and no return
values. Now make the Airplane and Bird classes implement the Movement interface. The program that contains
the main method should be called *ThingsThatMove*. It should create the same objects as in Exercise 2 and store
them in an array. Your program should have the following output:

Airplane [model=Boeing 747, year=2016]:
I rely on my engine to fly.
I tax on my wheels.
I cannot jump.
Bird [type=Eagle]:
I flap my wings to fly.
I walk on my feet.
I jump by leaping from my feet.
Bird [type=Hummingbird]:
I flap my wings to fly.
I walk on my feet.
I jump by leaping from my feet.



4/5/21, 10)50 PMIntermediate Programming

Page 75 of 185http://itec2150.gitlab.io/

4. Exceptions

4.1. Learning Outcomes
Describe what a Java exception is and how it is used in object-oriented programming

Handle Java exceptions using try/catch statements

Differentiate between handling an exception and simply "throwing" or letting is happen

Design effective exception handling

Use available Java Exception classes available in the Java API

Create and use a custom exception

4.2. Resources

4.2.1. Text and Tutorials

Introduction to Programming Using Java- Eighth Edition by David J. Eck: Chapter 8
(http://math.hws.edu/javanotes/c8/index.html) Chapter 8 - Correctness, Robustness, Efficiency

Java, Java, Java: Object-Oriented Problem Solving bby Ralph Morelli and Ralph Walde:
http://www.cs.trincoll.edu/~ram/jjj/jjj-os-20170625.pdf Chapter 10 Exceptions: When Things Go Wrong

Oracle Java Tutorial Lesson on Exceptions:
https://docs.oracle.com/javase/tutorial/essential/exceptions/index.html

4.2.2. Videos

The Theory of Exceptions Video : https://www.youtube.com/watch?v=8WTVLa1Xtsk

Practical Use of Exceptions Video: https://www.youtube.com/watch?v=RrKmwLBEv-U&t=20s

Another Exceptions Video: https://www.youtube.com/watch?v=K_-3OLkXkzY

4.3. Overview
When running your program, it is not uncommon to run into problems which cause the program to terminate or
stop running. When these types of errors are detected in Java programs, the run-time environment creates an
object known as an exception. Another definition for an exception is a run-time error that causes a program to
crash. The name also implies that it is a situation that is not normal execution. The Java API contains a set of
classes used as templates for the objects created when the errors are detected. In the package java.lang, these
classes are sometimes called the exception classes. In an ideal world, no program would encounter exceptions.
However, we don’t live in an ideal world so the Java language contains statements and constructs that allow us to
"handle" exceptions when they occur. Handling an exception means that the program contains code to either
correct an exception or provide an alternative to allowing the program to crash. Exceptions can be caused by
errors generated by external inputs or simply a bad program design. Java uses the term "throw" to describe what
happens when an exception occurs. The run-time environment is said to throw an exception when it occurs. What
is actually happening is that the run-time environment is gathering information about the type of error that

http://math.hws.edu/javanotes/c8/index.html
http://www.cs.trincoll.edu/~ram/jjj/jjj-os-20170625.pdf
https://docs.oracle.com/javase/tutorial/essential/exceptions/index.html
https://www.youtube.com/watch?v=8WTVLa1Xtsk
https://www.youtube.com/watch?v=RrKmwLBEv-U&t=20s
https://www.youtube.com/watch?v=K_-3OLkXkzY


4/5/21, 10)50 PMIntermediate Programming

Page 76 of 185http://itec2150.gitlab.io/

occurred and the line at which it occurred and storing that information into an object that is derived from the Java
exception classes. The programmer can also include code which allows for an exception to be thrown by the
program itself under certain circumstances. An unhandled exception will cause the running programming to
terminate and print a stack trace. To help prevent this, the programmer can include try/catch blocks which allow
the programmer to provide an alternate choice to ending the program. This is known as "handling" the exception.
In addition, it is possible to write code which creates, throws and handles custom exceptions which inherit from
the API provided exception classes. This chapter describes common Java API exceptions, how to programmatically
throw exceptions, how to handle exceptions and how to create your own customized exceptions.

4.4. Exception Handling
The idea of handling problems during execution has been a part of programming since there has been
programming. However, Java was one of the first languages to provide special statements for the handling of these
exceptional problems. Some common errors that generate exceptions are divide by zero errors and array index
out of bounds. A pseudocode solution to prevent this error without special statements is shown below.

*Divide by Zero Exception Handling Pseudo Code*
if (denominator not equal to 0)
   answer = numerator/denominator;
else
  inform user that division is not possible due to divide by zero

This traditional approach incorporates the handling of the error into the normal execution of the code. Java has
incorporated an exception-handling model into the code itself. In the case of a divide-by-zero error occurring
without exception handling code, the run-time environment detects the error and aborts the program. Then it
prints a stack trace. An example stack trace for a divide-by-zero error is shown below.

java.lang.ArithmeticException: / by zero
 at DivideException.main(DivideException.java:10)

As you can see, the stack trace first describes the exception that occurs and then lists the call stack ending with the
line number and method name where the exception occurs. In this case, the error occurred in the main method of
the java file DivideException.java on line 10. The stack trace is intended to help the programmer debug the
problem and is not considered a very good error message for a casual user.

The act of detecting the error and causing the program to abort by default is known as "throwing" the exception.
The exception shown - java.lang.ArithmeticException - is one of many provided in the Java API. Each exception is a
class in the Java library. The diagram below shows a UML diagram of the exception classes in the Java library. As
you can see in the diagram, all the Exceptions inherit from the class Throwable.

Exception Hierarchy



4/5/21, 10)50 PMIntermediate Programming

Page 77 of 185http://itec2150.gitlab.io/

4.5. Checked Exception vs UnChecked Exception
The exception classes are divided into checked and unchecked exceptions. The unchecked exceptions inherit from
the class RunTimeException. Unchecked means that the compiler will not require exception handling code around
a statement that has the potential to thrown an exception. Divide by zero is an example of an unchecked
exception. If it were checked, every division statement would need to have exception handling code. Unchecked
exceptions are typically conditions that the program can not anticipate or recover from. Many of these are
indications of a logic error in the code that should be corrected by changing the code. For example, passing an
object reference variable to a method before it is initialized will result in a NullPointerException being generated.
The programmer should make sure that the reference variable is intialized before using it. Checked exceptions are
conditions that a well-written program should anticipate and plan for. Many of the checked exceptions involve file
processing and are used prominantly in the next chapter on file processing. A call to a method that is capable of
throwing an exceptions will receive compiler errors if it does not use exception handling code. Custom designed
exception can be either checked or unchecked depending upon which parent exception class they inherit from.

4.6. Try/Catch/Finally Blocks
Exception handling code can be looked at as having three types of operations. *Declaring an exception *Throwing
an exception *Catching an exception

4.6.1. Declaring an exception

All executable code in Java belongs to a method. If a method is capable of throwing a checked exception, it
contains a throws statement in its header. For example, a method which throws an object of type IOException
would look like this: public void aMethod(int a) throws IOException

This does not mean the aMethod will always throw an IOException, it means that the method is capable of doing
so.

4.6.2. Throwing an exception



4/5/21, 10)50 PMIntermediate Programming

Page 78 of 185http://itec2150.gitlab.io/

In order for that error to be thrown, there must be code either in aMethod or one of the methods it calls that
detects an error, creates the exception object and then throws the exception. Suppose that the program detects
that an argument passed to the method is of incorrect type or violates the method contract (a negative value
received when a positive one is expected). It could then throw an IllegalArgumentException object. The code
belows show how the exception is created and thrown. The code shown assumes that the class
java.lang.IllegaalArgumentException has been properly imported into the Java file containing the code.

Tip: The keyword to declare an exception is throws and the keyword to throw an exception is throw. These are
similar, but do different things.

4.6.3. Catching an exception

If a programmer does not want the exception to terminate the program, at some point the exception must be
caught in a try-catch block. The try-catch block allows the programmer to separate the code that executes when
no exception occurs from the error handling code. The try block contains the desired execution of the code. The
catch block contains the code to handle an error if and when it occurs. If no exceptions occur during the execution
of the try block, the catch block code is ignored.

The code within the catch block or blocks is the exception handling code. If no handler exists for the exception that
occurs, the exception will result in the program terminating. In the example above, there are two catch blocks for
the single try block. Syntax only requires one catch block, but it is often useful to be able to do different things for
different types of exceptions. It is also possible to use inheritance to catch multiple exceptions in a single catch
block.

IllegalArgumentException ex = new IllegalArgumentException("Negative argument received");
throw ex;

trytry{
// code that could potentially thrown an exception
}
catchcatch (NullPointerException e)
{
  // code that is called if a NullPointerException occurs in the code encased in the try block
}
catchcatch (ArithmeticException e2)
{
  // code that is called if an ArithmeticException occurs in the code encased in the try block
}

JAVA

trytry
{
// code that could potentially throw an exception
}
catchcatch (Exception ex)
{
   // this will catch any exception thrown by the program since all Exception types inherit from the parent 
class named Exception.
   }

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 79 of 185http://itec2150.gitlab.io/

If using multiple catch blocks- be sure the more general Exception class is last.

An exception object contains valuable information about what happened to cause it. All exceptions inherit the
following methods from the parent class Throwable.

A stack trace is sometimes called a stack backtrace or even just a backtrace. The stack traceis a list of stack frames.
A stack frame indicates a moment during an application’s execution when a method is called. A stack frame
contains information about where the method was called from in the Java source code. So the Java stack trace
generated when an exception is called is a list of frames that starts at line in the method the exception occurred
and extends back to when the program started. While not particularly useful to program user, it provides valuable
information to the programmer about where the exception occurred.

4.7. Handling Exception vs Throwing Exception
When a method throws a checked exception or calls another method that does, the compiler will not compile the
code unless the exception is either thrown or handled. To handle the exception, the method must contain a
try/catch block as described in the previous section. Throwing an exception passes the burden of handling it to the

// wrong way to do it
trytry
{
   // code
}
catchcatch (Exception ex)
{
   // this block will catch all exceptions since all handlable exception inherit from Exception
}
catchcatch (NullPointerException e)
{
  // a waste of code- this will never be called because the NullPointerException inherits from Exception
}

JAVA

// right way
trytry
{
   // code
}
catchcatch (NullPointerException e)
{
  // This will handle any NullPointerExceptions
}
catchcatch (Exception ex)
{
   // this block will catch any other exceptions that occur - order matters
}

JAVA

String getMessage() - this method returns a string identifying the type of exception that occurred.
void printStackTrace() - this method prints current stack trace to the console and the type of exception thrown.



4/5/21, 10)50 PMIntermediate Programming

Page 80 of 185http://itec2150.gitlab.io/

calling method. If this is the main() method, there is no calling method and the exception causes program
termination. To throw an exception, the method must use the key word throws in the method header.

4.8. Custom Exceptions
It is possible to create and throw customized exceptions for a program. To do this, the first step is to create the
custom exception. An exception is a Java class and it must inherit from one of the existing Java Exception classes
from the Java API.

Once the custom exception class is created and compiled, your program can then explicitly cause that exception to
happen.

4.9. An example of Exception Handling used to validate input from user
A common use of exception handling is to make sure that the user enters the type of data desired when reading
from the console. When using Scanner objects to read user input, a String input when requesting a numeric input
can generate an InputMismatchException causing the program to abruptly terminate. Exception handling can
prevent the termination and allow the user to try again. The following example asks the user to enter 4 numbers
and then computes the average. The first version has no exception handling and if a letter is entered instead of a
number- the program will throw an exception and terminate- download it and try!

publicpublic intint someMethod() throwsthrows IOException
{
  // code that can cause an IOException to occur
}

JAVA

// A custom Exception class
// CustomException.java
public class CustomException extends Exception
{
   // custom exceptions must include a constructor that has a single parameter of type String.
   public CustomException(String s)
   {
      // this constructor must call the parent class constructor
      super(s)
   }
}

publicpublic voidvoid someMethod() throwsthrows CustomException
{
   // some code
   ifif (bad thing happens)
   {
      // note that you throw an object of CustomException - not the class so an object must be created.
      throwthrow newnew CustomException("A bad thing happened");
   }
   // some more code that only executes if the bad thing didnt happen
}

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 81 of 185http://itec2150.gitlab.io/

Now let us look at an example with exception handling that simply ignores the exception.

/**
 * This class prompts the user for four numbers and then
 * computes the average and prints it.
 *
 */
importimport java.util.Scannerjava.util.Scanner;

publicpublic classclass AverageCalculator
{

 publicpublic staticstatic voidvoid main(String[] args)
 {

  // declare variables
  Scanner consoleInput = newnew Scanner(System.in);

  doubledouble[] x = newnew doubledouble[4];
  doubledouble average = 0;
  doubledouble sum = 0;

  // input numbers
  forfor (intint i = 0; i < 4; i++)
  {
   System.out.println("Enter number " + (i + 1) + ":");
   x[i] = consoleInput.nextDouble();
   sum = sum + x[i];
  }
  // compute average
  average = sum / 4.0;

  // output average to console
  System.out.println("The average is " + average);

 }

}

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 82 of 185http://itec2150.gitlab.io/

The problem with ignoring the bad input is that the user does not get a chance to reenter the correct value. That
value is preset to 0 and skews the average. Let’s look at a third version that prompts the user to reenter the
mistyped value.

/**
 * This class prompts the user for four numbers and then
 * computes the average and prints it.
 *
 */
importimport java.util.InputMismatchExceptionjava.util.InputMismatchException;
importimport java.util.Scannerjava.util.Scanner;

publicpublic classclass AverageCalculatorIgnore
{

 publicpublic staticstatic voidvoid main(String[] args)
 {

  // declare variables
  Scanner consoleInput = newnew Scanner(System.in);

  doubledouble[] x = newnew doubledouble[4];
  doubledouble average = 0;
  doubledouble sum = 0;

  // input numbers
  forfor (intint i = 0; i < 4; i++)
  {
   trytry
   {
    System.out.println("Enter number " + (i + 1) + ":");
    x[i] = consoleInput.nextDouble();
    sum = sum + x[i];
   } catchcatch (InputMismatchException ex)
   {
    // ignore the error by reading the lingering delimiter
    consoleInput.nextLine();
   }
  }
  // compute average
  average = sum / 4.0;

  // output average to console
  System.out.println("The average is " + average);

 }

}

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 83 of 185http://itec2150.gitlab.io/

Note that all of the variables used are declared before the try/catch block. This is because any variable declared in
the try block is only usable in the curly braces surrounding the try code due to variable scope. When using
exception handling, make sure all variables are declared before the try/catch block.

4.10. Summary

/**
 * This class prompts the user for four numbers and then
 * computes the average and prints it.
 *
 */
importimport java.util.InputMismatchExceptionjava.util.InputMismatchException;
importimport java.util.Scannerjava.util.Scanner;

publicpublic classclass AverageCalculatorHandle
{

 publicpublic staticstatic voidvoid main(String[] args)
 {

  // declare variables
  Scanner consoleInput = newnew Scanner(System.in);

  doubledouble[] x = newnew doubledouble[4];
  doubledouble average = 0;
  doubledouble sum = 0;

  // input numbers
  forfor (intint i = 0; i < 4; i++)
  {
   booleanboolean goodValueReceived = falsefalse;
   whilewhile (!goodValueReceived)
   {
    trytry
    {
     System.out.println("Enter number " + (i + 1) + ":");
     x[i] = consoleInput.nextDouble();
     sum = sum + x[i];
     goodValueReceived = truetrue;
    } catchcatch (InputMismatchException ex)
    {
     // read in the bad value
     consoleInput.nextLine();
     System.out.println("Sorry- that wasn't a number -try again");
    }
   }
  }
  // compute average
  average = sum / 4.0;

  // output average to console
  System.out.println("The average is " + average);

 }

}

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 84 of 185http://itec2150.gitlab.io/

Exceptions in Java programs occur when a run-time error occurs that the JRE can not recover from.

A Java Exception is an instance of class derived from java.lang.Throwable

When a run-time error occurs that causes an Exception class to be instantiated and interrupt the program
execution, we say that the exception was thrown

Exceptions can be either checked or unchecked

Checked exceptions mean the compiler requires the programmer to acknowledge the possibility of the
exception through the use of a try/catch block to handle it or a throws clause on the method indicating that
handling the exception is being passed to the calling method

The compiler does not require that programmers acknowledge unchecked exception possibility.

Try/catch blocks allow the user to handle an exception rather than simply letting it end the program

Custom exceptions can be created that inherit from existing library Exception classes.

4.11. Key Terms
Exception - An erroneous or anomalous condition that comes up when a program is running.

Exception Handling - An approach that separates a program’s normal code from it’s error-handling code.

Throw - To throw an exception is to create an exception object and pass it off to the run-time environment. This is
done explicity in code using the throw keyword.

Stack Trace-A stack trace is sometimes called a stack backtrace or even just a backtrace. The stack traceis a list of
stack frames. A stack frame indicates a moment during an application’s execution when a method is called. A stack
frame contains information about where the method was called from in the Java source code. So the Java stack
trace generated when an exception is called is a list of frames that starts at line in the method the exception
occurred and extends back to when the program started.

4.12. Exercises

4.12.1. Exercise 1

Create a simple addition calculator in Java. The program should prompt the user to enter 2 integers, then adds the
numbers and prints the result. Make sure the program includes appropriate exception handling in case the user
does not enter appropriate integer values.

4.12.2. Exercise 2

Write a Java program to randomly create an array of 50 double values. Prompt the user to enter an index and
prints the corresponding array value. Include exception handling that prevents the program from terminating if
an out of range index is entered by the user. (HINT: The exception thrown will be ArrayIndexOutOfBounds)

4.12.3. Exercise 3



4/5/21, 10)50 PMIntermediate Programming

Page 85 of 185http://itec2150.gitlab.io/

Create a custom Exception named IllegalTriangleSideException. Create a class named Triangle. The Triangle
class should contain 3 double variables containing the length of each of the triangles three sides. Create a
constructor with three parameters to initialize the three sides of the triangle. Add an additional method named
checkSides with method header - *boolean checkSides() throws IllegalTriangleSideException *. Write code so that
checkSides makes sure that the three sides of the triangle meet the proper criteria for a triangle. It will return true
if and only if the sum of side1+ side2 is greater than side3 AND the sum side2+side3 is greater than side1 AND the
sum of side1+ side3 is greater than side2. If any of those three conditions is not met, the method will create and
throw an IllegalTriangleSideException. Add a main method to create and check two to three different triangles.

4.13. Issue Tracker/Comments
Issue Tracker (https://github.com/hpark7/help_desk/issues)

https://github.com/hpark7/help_desk/issues


4/5/21, 10)50 PMIntermediate Programming

Page 86 of 185http://itec2150.gitlab.io/

5. File Input/Output

5.1. Learning Outcomes
Describe the difference between text and binary files

Access (open) files for reading and writing

Learn the common file handling exceptions and how to handle them

Use the API classes BufferedFileReader and BufferedFileWriter for text file access

Use Scanner to read and parse text files.

Understand the purpose of and use regular expressions

Use PrintWriter to output to and create text files.

5.2. Resources

5.2.1. Text and Tutorials

Introduction to Programming Using Java- Eighth Edition by David J. Eck:
http://math.hws.edu/javanotes/c11/index.html Chapter 11 - Input/Output Streams, Files and Networking

Java, Java, Java: Object-Oriented Problem Solving bby Ralph Morelli and Ralph Walde:
http://www.cs.trincoll.edu/~ram/jjj/jjj-os-20170625.pdf Chapter 4 and Chapter 11 Files and Streams

Java API java.io package reference :
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/package-summary.html

Oracle Java Tutorial on Regular Expressions: https://docs.oracle.com/javase/tutorial/essential/regex/index.html

5.2.2. Videos

Video on how to read files using Scanner : https://www.youtube.com/watch?v=3RNYUKxAgmw

Video on how to write files with PrintWriter : https://www.youtube.com/watch?
v=Bws9aQuAcdg&list=PLFE2CE09D83EE3E28&index=81&t=0

Video on reading and writing file- only first ten minutes is on text files : https://www.youtube.com/watch?
v=_jhCvy8_lGE

5.3. Overview
Computer files are used to store collections of data on a computer storage device such as a hard drive. Java
contains a series of API classes to aid in the reading and writing of data to and from these files. In this chapter, we
discuss text file input and output. Text files can be viewed as computer files containing a collection of Unicode (or
a subset of Unicode such as ASCII) characters. Typically, the data is organized into a series of strings which can be
read into a computer program. Binary files are a collection of binary coded data in the native format of the
computer and requires a different set of API classes to process the data. Text files are useful to programmers as
they can be used to store human readable data that can be edited either within a Java program or externally using

http://math.hws.edu/javanotes/c11/index.html
http://www.cs.trincoll.edu/~ram/jjj/jjj-os-20170625.pdf
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/package-summary.html
https://docs.oracle.com/javase/tutorial/essential/regex/index.html
https://www.youtube.com/watch?v=3RNYUKxAgmw
https://www.youtube.com/watch?v=Bws9aQuAcdg&list=PLFE2CE09D83EE3E28&index=81&t=0
https://www.youtube.com/watch?v=_jhCvy8_lGE


4/5/21, 10)50 PMIntermediate Programming

Page 87 of 185http://itec2150.gitlab.io/

text editors. Each file has a short name with a file extension such as "HW1.java" and a path name. The path name
describes where the file is stored on the computer storage device. In some computers this is known as the
directory or folder location. In a Windows hard drive, an example of a path name might be:
"C:\\Users\\cjohns25\\Workspace\\Homework1\\src" . Note that when using the \ character inside a Java String type,
we repeat it twice because that character is used to indicate a special nonprinting character inside the String. This
chapter explores how to read and use data from a text file in a Java program in a couple of different ways. It also
explores how to create and write to text files within a Java program. This is primarily done using a set of Java API
classes in the java.io package.

5.4. Streams and Files
All data from external sources coming into or out of a Java program uses streams. Streams are one way
connections between an external data source and the Java program. It is useful to think of them as a pipe where
only one piece of data may flow at a time. Data can also only flow one way. So we use different streams for reading
a file and writing a file. You have been using the System.in stream for reading data from the computer keyboard.
You have also been writing data using the System.out stream to write to the console for the user to see. The
streams used to read and write files operate similarly and you will recognize some of the methods we will use to
read and write to files.

5.5. The File class
Before we can read or write a file, we must "open" the file for reading and writing. The run-time system has been
taking care of opening the streams for user input and output, but the programmer is responsible for opening the
streams for file handling. The first step is to create an instance of the File class which contains all the information
the system needs to know about the location of the file. It provides a platform independent representation of the
files name and directory information. You can create a File instance using only the name of the file and allow the
IDE to look for it in the default directory for file input. However, this default directory is different for different
IDE’s. Consult your IDE documentation for the default file directory if you desire to use only the file name.

However, it is best to use a fully realized path name when creating the file. This is going to be different depending
upon the operating system of the computer you are using. Refer to your operating system reference to figure out
fully realized path names.

// creating a File instance using the default directory
importimport java.io.Filejava.io.File;
File myFile = newnew File("Hw1.txt");

JAVA

// creating a file using fully realized path name in Windows
import java.io.File;
// remember to get a single \ in a Java string we have to put \\
File myFile = new File("C:\\Users\\cjohns25\\Desktop\\HW1.txt");

// a full realized path name on an Apple MacBook
File myMacFile = new File("/users/cjohns25/Documents/2150/HW1.txt");



4/5/21, 10)50 PMIntermediate Programming

Page 88 of 185http://itec2150.gitlab.io/

Once we have created a File object for the file we wish to interact with, we are ready to open our data stream to
the file.

5.6. BufferedReader and BufferedWriter
There are actually several ways to read and write from text files using the Java API classes. We are going to look at
some common ways to do so. Text files typically consist of human readable characters. When dealing with lines of
text, the easiest class to use for reading those lines of text in is the BufferedReader class. The associated output
class for writing to files is known as BufferedWriter. There are limitations with these classes since they can only
read or write lines of text. BufferedReader has a method named readLine() for reading a line of text. The
example below shows an example of reading lines of text from a file named "text.txt" and then writing to the
console using System.out.

The BufferedReader and BufferedWriter class are useful when dealing with large chunks of data. This is useful
in certain situations when dealing with external devices that deal in large chunks of data, but not so much when
trying to take discrete pieces of data from a file and place them into various variables. Let’s look at an example
where this might be useful.

5.6.1. An Example using BufferedReader and BufferedWriter

The following example shows how to use BufferedReader and BufferedWriter to copy from one file to another. In
this code, a file named "example.txt" is copied character by character into a new file titled "exampleCopy.txt". Note
that if the text file "exampleCopy.txt" already exists, this program will erase any content currently in the file.

importimport java.io.Filejava.io.File;
importimport java.io.BufferedReaderjava.io.BufferedReader;

...
File f = newnew File("text.txt");
BufferedReader buffer =  nullnull;
trytry
{
   buffer= newnew BufferedReader(newnew FileReader(f));
   String aLine = buffer.readLine();
   System.out.println(aLine);
}
catchcatch (IOException ex)
{
    // code to handle either an empty file or nonexistent file
}

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 89 of 185http://itec2150.gitlab.io/

5.7. PrintWriter
The most common way to write to a text file is through the use of the java.io.PrintWriter class. It is capable of
writing a variety of data types and is quite versatile. You have also been using the PrintWriter methods everytime
you write to the console. System.out is an object of type PrintWriter. Unlike System.out, it is necessary to open a

/**
 * This example shows how to copy one text file to another using BufferedReader
 * BufferedWriter classes. Requires that the file "example.txt" be in the
 * default file directory for your IDE.
 *
 */
importimport java.io.Filejava.io.File;
importimport java.io.FileReaderjava.io.FileReader;
importimport java.io.FileWriterjava.io.FileWriter;
importimport java.io.IOExceptionjava.io.IOException;
importimport java.io.BufferedReaderjava.io.BufferedReader;
importimport java.io.BufferedWriterjava.io.BufferedWriter;

publicpublic classclass BufferedWriterExample
{

 publicpublic staticstatic voidvoid main(String[] args)
 {
  File readFile = newnew File("example.txt");
  File writeFile = newnew File("exampleCopy.txt");
  BufferedReader readBuffer = nullnull;
  BufferedWriter writeBuffer = nullnull;
  // open files for reading and writing
  intint readResult = 0;
  trytry
  {
   readBuffer = newnew BufferedReader(newnew FileReader(readFile));
   writeBuffer = newnew BufferedWriter(newnew FileWriter(writeFile));
   dodo
   {
    readResult = readBuffer.read();
    // -1 = nothing to read
    ifif (readResult != -1)
    {
     writeBuffer.write((charchar) readResult);
    }
   } whilewhile (readResult != -1);
   writeBuffer.close();
   readBuffer.close();

  } catchcatch (IOException ex)
  {
   ex.printStackTrace();
   System.out.println("Problem with files");
  }

 }

}

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 90 of 185http://itec2150.gitlab.io/

file and create an object of type Printwriter associated with each file you are writing. The constructors for
PrintWriter allow you to create with either a File object or just a String containing the file name. Examples below
show both ways of opening a text file for writing.

Both ways of opening the file are equally effective and efficient. Most programmers choose the second way
because it requires less programming. In the example shown, a simple String literal was written to the file using
the println() method. You have been using println and print methods to write to the console. Writing to a file
using them in an identical fashion.

Note: Opening and writing to a file has potential to generate one of several checked exception that inherit from
IOException. Therefore, it is important to open and process files using proper exception handling.

5.7.1. Example of writing data to a text file

In this example, the user is prompted for a file name. A text file of that name is created and written to. It is
important to note that if the named file already exists in the file path used, it will erase the current contents of that
file and replace them with the text in the example. Also, this is the first time you have seen the use of the finally
block in the try/catch blocks used for exception handling. The code in the curly braces of the finally block is
executed regardless of whether the code in the try block executes without problem or an exception is

File f = newnew File("outText.txt");
PrintWriter myWriter = nullnull;
trytry
{
  // open the file using a File object
   myWriter = newnew PrintWriter(f);

   myWriter.println("I am writing this to the file");

   myWriter.close();
  }
  catchcatch (IOException ex)
  {
     // handle exception generated if system can not open or write to file
  }

JAVA

//same example- opening file using only file name
PrintWriter myWriter = nullnull;
trytry
{
  // open the file using a File object
   myWriter = newnew PrintWriter("outText.txt");

   myWriter.println("I am writing this to the file");

   myWriter.close();
  }
  catchcatch (IOException ex)
  {
     // handle exception generated if system can not open or write to file
  }

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 91 of 185http://itec2150.gitlab.io/

encountered. The use in this example is common as we are closing the file in the finally block. A file being written
to which is not closed properly at the end of the program is not guaranteed to contain the text written by the
program. Closing of the files in a finally block is a common use of the block and is considered a best practice for
programmers. The compiler will warn you if the file is not closed, but will allow you to run your program without
properly closing the file.

importimport java.io.Filejava.io.File;
importimport java.io.IOExceptionjava.io.IOException;
importimport java.io.PrintWriterjava.io.PrintWriter;
importimport java.util.Scannerjava.util.Scanner;

/**
 *
 * Example of opening a text file for writing and writing various information to
 * it.
 *
 */
publicpublic classclass WriteTextFile
{

 publicpublic staticstatic voidvoid main(String[] args)
 {

  // declare variables before try/catch block to avoid scope issues

  // scanner to allow user input values
  Scanner consoleInput = newnew Scanner(System.in);

  // variable for file name
  String fileName;

  // variable to hold info about the File
  File theFile;

  // PrintWriter object to open for writing to file
  PrintWriter outputFile = nullnull;

  // open file with proper exception handling
  booleanboolean fileOpen = falsefalse;

  whilewhile (!fileOpen)
  {
   trytry
   {
    // ask user for a file name
    System.out.println("Please enter name of file to be created and written to:");
    fileName = consoleInput.nextLine();
    theFile = newnew File(fileName);
    outputFile = newnew PrintWriter(theFile);
    fileOpen = truetrue;
   } catchcatch (IOException ex)
   {
    System.out.println("Unable to open that file- check directory information and file name");
   }

  }
  // using a second try/catch block to separate writing errors from
  // file opening errors

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 92 of 185http://itec2150.gitlab.io/

5.8. Scanner
The class we use to read individual bits of data from a text file is Scanner. Yes this is the same Scanner class we
use for reading input from the keyboard. So you are already familiar with the common methods for reading
information. *next() - for reading a String *nextLine() - for reading a line of text terminated by the end of line
character *nextInt() - for reading an integer *nextDouble() - for reading a double

When reading from the keyboard, we create a Scanner object and pass the System.in object as a parameter at
construction. To use Scanner to read from a File, we create the Scanner object by passing either a File object or
String containing the file name similar to PrintWriter. Also, unlike reading from the keyboard, creating a Scanner
object linked to a file can potentially generate a checked exception so it is important to use proper exception
handling. See the two examples for opening a Scanner to read a file shown below.

  trytry
  {
   // file opened for writing - let's put something in there
   outputFile.println("This is how to write a string literal to a file");
   doubledouble x = 55.6;
   outputFile.println("This is how to print a double value: " + x);
   intint y = 10;
   String s = "This is a string variable";
   outputFile.println(s + " this is an integer " + y);

  } catchcatch (Exception ex)
  {
   // print the stack trace so programmer can see what line the exception
   // occurred on
   ex.printStackTrace();
   // tell the user something
   System.out.println("Unable to write to the file- program is terminating");
  } finallyfinally
  {
   // regardless of whether exception occurred- close the file opened for writing
   outputFile.close();
  }

 }

}



4/5/21, 10)50 PMIntermediate Programming

Page 93 of 185http://itec2150.gitlab.io/

Note above that we used a new method on Scanner that we didn’t use with the keyboard. This method is hasNext().
This method indicates whether or not there is any remaining data in the file that has not already been read. It does
not read the data- it simply indicates that there is still data yet to be read. Remember, we are reading from a
stream of data and can only read each piece of data once. It is also not possible to reread data so be very careful
not to throw data away.

5.8.1. How does Scanner work?

The methods in Scanner used to read data, read input separated by delimiters. Delimiters are the nonprinting
characters used to format the text such as blank spaces, tabs and end of line characters. The methods above first
skip a delimiter and then read characters until another delimiter is encountered. They do not read the second
delimiter. The characters read are then converted to the desired type indicated by which method was called. If the
characters do not match what was asked for, an InputMismatchException is generated. For example, if the method
nextInt() is called and the characters read contain a non-numeric character, an exception will be generated. The
methods next() and nextLine() read and convert characters to Strings. The nextLine() method only uses end of
line characters as delimiters. The end of line character is called a line separator in Java and is defined in a String
as \r or \n in Windows and \n on Unix. It is platform dependent- as a result you may occasionally see issues using
nextLine() on cross platform files.

Files can also be read across the internet assuming the file desired to be read has a URL. Instead of creating a File
object to use in constructing Scanner, a java.net.URL object is created.

5.8.2. File reading Examples

File f = newnew File("dataFile.txt);
Scanner fileScanner = null;
try
{
  fileScanner = new Scanner(f);
  /*
     alternately could have written
     fileScanner = new Scanner("dataFile.txt");
  */

  whilewhile (!fileScanner.hasNext())
  {
       // read the next piece of data in the file- this example shows all String data
       String data = fileScanner.next();
  }
  fileScanner.close();
}
catchcatch (IOException ex)
{
   // code to handle a problem opening or reading from the file.
}

JAVA

// opening a file using a URL
String URLString = "www.somedomain.com/someFile.txt";
java.net.URL theURL = newnew java.net.URL(URLString);
Scanner urlReader = newnew Scanner(theURL);

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 94 of 185http://itec2150.gitlab.io/

There are lots of ways to read data from a text file. And it mostly depends on the format of the text file. So before
writing the program to read a file, the programmer should be aware of the format of the data. In this first
example, the file name is determined by prompting the user to enter it. Then each line of the text file is read as a
String. By reading the data as a String, the programmer does not have to know if the characters read are text,
numeric or symbolic. However, once read that way, it must be parsed to use as anything other than a String.

importimport java.io.Filejava.io.File;
importimport java.io.FileNotFoundExceptionjava.io.FileNotFoundException;
importimport java.io.IOExceptionjava.io.IOException;
importimport java.io.PrintWriterjava.io.PrintWriter;
importimport java.util.Scannerjava.util.Scanner;

/**
 *
 * This example shows how to open a text file for reading and read each line as
 * a String and print to console
 *
 */
publicpublic classclass ReadStringsFromFile
{

 publicpublic staticstatic voidvoid main(String[] args)
 {
  // declare variables before using in try/catch loop to avoid scope issues
  // open a Scanner for user input
  Scanner consoleInput = newnew Scanner(System.in);

  String fileName = nullnull;
  File theFile = nullnull;
  Scanner inputFile = nullnull;

  // open file with proper exception handling
  booleanboolean fileOpen = falsefalse;

  whilewhile (!fileOpen)
  {
   trytry
   {
    // ask user for a file name
    System.out.println("Please enter name of file to be created and written to:");
    fileName = consoleInput.nextLine();
    theFile = newnew File(fileName);
    inputFile = newnew Scanner(theFile);
    fileOpen = truetrue;
   } catchcatch (FileNotFoundException ex)
   {
    System.out.println("Unable to open that file- check to make sure directory is corerct and file 
exists");
   }

  }

  // now read from the file - note- program will loop until valid file name
  // entered
  trytry
  {
   // continue to read while file contains info
   whilewhile (inputFile.hasNextLine())

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 95 of 185http://itec2150.gitlab.io/

Suppose we want to read a bunch of numbers from file. For example, we might have a file named numbers.txt
that contains a bunch of test grades that we want to average. The text file might look like this:

If we use the first example, these numbers will become individual String data items in the program. In order to
average them, we would have to convert them to double values. Or we could just read them as double values from
the file. This is shown in the example below which reads in the numbers above and averages them all together.

   {
    // read the line
    String line = inputFile.nextLine();
    // output it to console
    System.out.println(line);
   }

  } catchcatch (Exception ex)
  {
   // stack trace for programmer
   ex.printStackTrace();
   // message for user
   System.out.println("Unable to continue reading from file");
  } finallyfinally
  {
   inputFile.close();
  }

 }

}

44.5
33.2
-100
66.7
55
2345
-234256
12343256
22.7
10
0



4/5/21, 10)50 PMIntermediate Programming

Page 96 of 185http://itec2150.gitlab.io/

5.9. Regular Expressions and parsing a file
Regular expressions allow us to expand the definition of what the Scanner sees as delimiters. Delimiters are
characters used by Scanner to determine where one piece of data starts and another ends. The types of delimiter
are often dictated by the method of Scanner used. For example, the methods used to read a specific type of data-
next(), nextInt(), nextDouble(), etc use whitespace characters by default. Whitespace characters are non-
printing characters used to provide negative space on a printed page. These provide negative or "white" space on a

importimport java.io.Filejava.io.File;
importimport java.io.IOExceptionjava.io.IOException;
importimport java.util.Scannerjava.util.Scanner;

/**
 * Use with numbers.txt in default file directory Program reads the numbers.txt
 * file and averages all the numbers
 *
 */
publicpublic classclass ReadNumbersFromFile
{

 publicpublic staticstatic voidvoid main(String[] args)
 {
  // declare variables outside try/catch block to avoid scope issues
  Scanner inputFile = nullnull;
  // keep a running total of numbers read
  doubledouble sum = 0;
  // keep count of numbers read
  intint numberCount = 0;

  trytry
  {
   inputFile = newnew Scanner(newnew File("numbers.txt"));
   whilewhile (inputFile.hasNextDouble())
   {
    doubledouble num = inputFile.nextDouble();
    numberCount++;
    sum = sum + num;
   }

  } catchcatch (IOException ex)
  {
   System.out.println("Problem reading file encountered");
   ex.printStackTrace();
  } finallyfinally
  {
   // ALWAYS close file when done
   inputFile.close();
  }

  // computer and print average of the numbers
  doubledouble average = sum / numberCount;
  System.out.println("The average of the numbers read is: " + average);

 }

}

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 97 of 185http://itec2150.gitlab.io/

printed page. Examples are the tab character, the blank space character and the new line character. The method
nextLine() only uses the new line character as a delimiter. The input methods work by skipping any delimiters,
reading characters until the next delimiter is reached. The characters read are converted into the desired type and
returned. If the characters read do not match the desired type (i.e. "abc" is read when calling nextInt()), an
InputMismatchException is thrown.

We can modify the characters the Scanner object uses as delimiter by passing in a String known as a regular
expression or regex using the Scanner method useDelimiter(String regex).

Some commonly used regex Strings are defined at: https://www.jrebel.com/blog/java-regular-expressions-cheat-
sheet . Advanced users of regular expression will use the Java Library class Pattern to define complex regular
expressions. A common simple use is to read comma delimited files like those sometimes generated by
spreadsheet programs. A comma delimited file contains data in a text file separated by a comma character.
Comma characters are not default delimiters used by Scanner. We can add the comma as a delimiter by calling the
useDelimiter() method on Scanner and passing in a comma character. See the example below which reads in a
comma delimited file named Book1.csv. Here is what the file looks like.

If we attempt to read the 10 numbers using nextInt(), we will get InputMismatchException each time a comma is
detected. By adding the comma as a delimiter, we fix that problem. See the file below that adds the comma as a
delimiter and successfully reads the 10 numbers.

1,2,3,4,5,6,7,8,9,10

https://www.jrebel.com/blog/java-regular-expressions-cheat-sheet


4/5/21, 10)50 PMIntermediate Programming

Page 98 of 185http://itec2150.gitlab.io/

5.10. Case Study: A Client Database
Let’s look at an example of using text files to contain information about a business’s client using text files to store
the information and object-oriented principles to design the application. Note that the client information is
minimal for purposes of brevity. We start by creating a class to hold information about a single client. See the class
below. Note that the class contains three attributes about a client and getter methods for the three attributes. The
class also implements the Comparable interface in case we want to sort our Client list by name. And the class
overrides the default toString() method to print client information in a user-friendly format.

importimport java.io.Filejava.io.File;
importimport java.io.IOExceptionjava.io.IOException;
importimport java.util.Scannerjava.util.Scanner;

/**
 * This example reads a set of numbers stored in a comma delimited file (.csv)
 * output from Excel using regular expressions- it sums the numbers and prints
 * the sum. To run properly need example file Book1.csv in default file location
 *
 */
publicpublic classclass ReadCSVFile
{

 publicpublic staticstatic voidvoid main(String[] args)
 {
  Scanner inputFile = nullnull;
  intint sum = 0;
  // define the regular exppression
  String regex = ",";

  trytry
  {
   inputFile = newnew Scanner(newnew File("Book1.csv"));
   inputFile.useDelimiter(regex);
   // scanner will use the String regex to determine where one number starts
   // and another ends
   whilewhile (inputFile.hasNext())
   {
    String numString = inputFile.next();
    intint num = Integer.parseInt(numString);
    sum = sum + num;
    System.out.println(numString);
   }
  } catchcatch (IOException ex)
  {
   ex.printStackTrace();
   System.out.println("There was a problem opening or reading file");
  } finallyfinally
  {
   inputFile.close();
  }

  System.out.println("The sum is : " + sum);

 }

}

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 99 of 185http://itec2150.gitlab.io/

/**
 * This class contains information about a client/customer that is maintained in
 * a business's data store. The class follows good object oriented principles
 * for data encapsulation and hiding.
 *
 */
publicpublic classclass Client implementsimplements Comparable<Client>
{
 // attributes of the client
 privateprivate intint clientNumber;
 privateprivate String name;
 privateprivate String address;

 // constructor- no default constructor provided so number, name and address info
 // must be provided
 // at construction time. No set methods are provided to enforce this.
 publicpublic Client(intint clientNumber, String name, String address)
 {
  thisthis.clientNumber = clientNumber;
  thisthis.name = name;
  thisthis.address = address;
 }

 // getter methods to allow information to be viewed outside the class
 /**
  * @return the clientNumber
  */
 publicpublic intint getClientNumber()
 {
  returnreturn clientNumber;
 }

 /**
  * @return the name
  */
 publicpublic String getName()
 {
  returnreturn name;
 }

 /**
  * @return the address
  */
 publicpublic String getAddress()
 {
  returnreturn address;
 }

 // compare to method to allow list of clients to be sorted if desired
 @Override
 publicpublic intint compareTo(Client other)
 {
  // compare clients based on name and if same name- use clientNumber
  ifif (thisthis.name.equalsIgnoreCase(other.name))
  {
   // name is the same - return based on clientNumber
   ifif (thisthis.clientNumber < other.clientNumber)
   {
    returnreturn -1;

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 100 of 185http://itec2150.gitlab.io/

Now we have to write the application to keep a list of our business’s clients. The ClientDatabase class contains
methods to read from a text file named "client.txt". The method creates objects of type Client based on the text
read in and then stores them in an ArrayList. In applications like this, it is common to hard code the text file name
since the business probably is not going to change. We also have a method to write an ArrayList of Client objects to
the same text file. By using the same text file name, we will delete the old data and write the new. There are also
methods to print a user menu and another to prompt for and read in the information to add a new Client object to
the database. By creating separate methods to do these tasks, we break the problem up into smaller easier to solve
problems. It also makes the code more modular, readable and reusable. See the code below.

   } elseelse ifif (thisthis.clientNumber > other.clientNumber)
   {
    returnreturn 1;
   } elseelse // they must be equal if none of above is true
   {
    returnreturn 0;
   }
  } elseelse // names are not equal- use String compareTo to determine greater than, less
    // than or equal
  {
   returnreturn thisthis.name.compareTo(other.name);
  }
 }

 // provide a toString method to print client information in easy to read fashion
 @Override
 publicpublic String toString()
 {
  returnreturn "clientNumber=" + clientNumber + "\nname=" + name + "\naddress=" + address + "\n";
 }

}

importimport java.io.Filejava.io.File;
importimport java.io.FileNotFoundExceptionjava.io.FileNotFoundException;
importimport java.io.PrintWriterjava.io.PrintWriter;
importimport java.util.ArrayListjava.util.ArrayList;
importimport java.util.Scannerjava.util.Scanner;

/**
 * This class reads data from textfile named client.txt and uses it to populate
 * an ArrayList of Client objects. The user is then able to change the ArrayList
 * by deleting or adding an object. Upon exit, the client.txt file is
 * overwritten with the modified ArrayList
 *
 */
publicpublic classclass ClientDatabase
{

 /*
  * This method reads in client.txt, creates Client objects based on the data,
  * and populates theList with the new Client objects
  *
  * @param ArrayList<Client>
  *
  * @return ArrayList<Client>
  */

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 101 of 185http://itec2150.gitlab.io/

 publicpublic ArrayList<Client> readFile(ArrayList<Client> theList)
 {
  String fileName = "client.txt"; // hard coding file name
  File theFile = nullnull;
  Scanner inputFile = nullnull;

  trytry
  {
   theFile = newnew File(fileName);
   inputFile = newnew Scanner(theFile);
  } catchcatch (FileNotFoundException ex)
  {
   System.out.println("Unable to open client file- continuing with empty list");
   returnreturn theList;
  }

  // file opened- now let's read from it
  trytry
  {
   whilewhile (inputFile.hasNextLine()) // loop until we get to end of the file
   {
    // first read client Number as String- mixing reading Strings and ints
    // causes issues- so read as String and convert
    String number = inputFile.nextLine();
    intint clientNumber = Integer.parseInt(number);

    // now name
    String name = inputFile.nextLine();

    // now address
    String address = inputFile.nextLine();

    // now create Client object and add to ArrayList
    Client c = newnew Client(clientNumber, name, address);
    theList.add(c);
   }

  } catchcatch (Exception ex)
  {
   ex.printStackTrace();
   System.out.println("Problem reading the client file- continuing with what was read");
  } finallyfinally
  {
   inputFile.close();
  }
  returnreturn theList;
 }

 /*
  * This method takes the Client objects in theList and converts them to the
  * proper format for writing in to the client.txt file. Note existing contents
  * of client.txt are overwritten.
  *
  * @param theList
  */
 publicpublic voidvoid writeFile(ArrayList<Client> theList)
 {
  // variable for file name
  String fileName = "client.txt";

  // variable to hold info about the File



4/5/21, 10)50 PMIntermediate Programming

Page 102 of 185http://itec2150.gitlab.io/

  File theFile;

  // PrintWriter object to open for writing to file
  PrintWriter outputFile = nullnull;

  trytry
  {
   theFile = newnew File(fileName);
   outputFile = newnew PrintWriter(theFile);
  } catchcatch (FileNotFoundException ex)
  {
   System.out.println("Unable to write client.txt in default location- check file permissions and try 
again");
   // print stack trace for debugging - remove when program is working properly
   ex.printStackTrace();
  }

  // now write to and close the file
  trytry
  {
   // loop through the entries in ArrayList
   forfor (intint i = 0; i < theList.size(); i++)
   {
    // get a local variable to shorten typing
    Client c = theList.get(i);

    // format of file = clientNumber, name, address - each on own line
    outputFile.println(c.getClientNumber());
    outputFile.println(c.getName());
    outputFile.println(c.getAddress());
   }
  } catchcatch (Exception ex) // using exception instead of specific exception because many possible wrong
        // things could happen
  {
   ex.printStackTrace(); // print the stack trace for debug purposes.
  } finallyfinally
  {
   outputFile.close();
  }
 }

 /**
  * Method to print the user menu to console
  */
 publicpublic voidvoid printMenu()
 {
  System.out.println("a.  View Client List");
  System.out.println("b.  Add a Client");
  System.out.println("c.  Delete a Client");
  System.out.println("d.  Quit");
 }

 /**
  * Method to prompt user to enter info for new Client
  *
  * @param Scanner
  * @return Client
  */
 publicpublic Client addClient(Scanner s)
 {
  System.out.println("Please enter client number");



4/5/21, 10)50 PMIntermediate Programming

Page 103 of 185http://itec2150.gitlab.io/

  intint number = s.nextInt();

  // read extra delimiter left from reading in a number
  s.nextLine();
  System.out.println("Enter client name");
  String name = s.nextLine();

  System.out.println("Enter client address");
  String address=s.nextLine();

  Client c = newnew Client(number, name, address);
  returnreturn c;

 }

 /**
  * The main method
  *
  * @param args
  */
 publicpublic staticstatic voidvoid main(String[] args)
 {
  // create scanner to read from console
  Scanner keyboard = newnew Scanner(System.in);
  // create an instance of this class to use non-static methods
  ClientDatabase theClass = newnew ClientDatabase();

  // create array list for client list and then read file
  ArrayList<Client> theClientList = newnew ArrayList<Client>();
  // call method to read file
  theClientList = theClass.readFile(theClientList);
  booleanboolean keepLooping = truetrue;
  // loop until user wants to quite
  whilewhile (keepLooping)
  {
   // print the menu
   theClass.printMenu();
   String choice = keyboard.nextLine();

   ifif (choice.equalsIgnoreCase("a"))
   {
    // print the database
    forfor (Client c: theClientList)
    {
     System.out.println(c);
    }
   }
   elseelse ifif (choice.equalsIgnoreCase("b"))
   {
    // add a client
    theClientList.add(theClass.addClient(keyboard));
   }
   elseelse ifif (choice.equalsIgnoreCase("c"))
   {
    // delete a client
    System.out.println("Enter client number to delete");
    // read as String to avoid delimiter issues
    String num = keyboard.nextLine();
    intint clientNumber = Integer.parseInt(num);
    // find record in arrayList wiht matching client number and delete it
    forfor (intint i = 0; i< theClientList.size(); i++)



4/5/21, 10)50 PMIntermediate Programming

Page 104 of 185http://itec2150.gitlab.io/

5.11. Key Terms
File - A resource used to store a collection of data on a computer storage device.

Text File - A computer file consisting of human readable Unicode characters. Typically read using a text editor like
the one in most IDE’s. Considered human readable.

Binary File - A computer file stored in the native binary code of the computer. Not considered human readable.

Input - Information or data from an external source read into a Java program.

Output - Information or data from a Java program written to an external source.

Open a File- Create a stream of data to or from a computer file.

File Stream - A one way queue of data either to or from a file. The order of data in the queue represents the order
of the data in the file.

Close a File- Flush and close a stream of data to or from a file. When writing a file, forces the program to wait until
all data in the stream has been written to the file. When reading a file, terminates any further data coming from
the file.

    {
     Client c = theClientList.get(i);
     ifif (c.getClientNumber() == clientNumber)
     {
      theClientList.remove(i);
      System.out.println("Client removed");
      breakbreak;  // stop searching once found
     }
    }

   }
   elseelse  //if a, b or c not chosen- end loop
   {
    keepLooping = falsefalse;
   }

  }

  // write back to file
  System.out.println("Writing new client list to file");
  theClass.writeFile(theClientList);

 }

}



4/5/21, 10)50 PMIntermediate Programming

Page 105 of 185http://itec2150.gitlab.io/

Delimiter - Delimiters are whitespace characters used to separate various pieces of data in a text file. Examples are
a blank space, tab, or end of line characters which do not show up as print in a text file.

5.12. Exercises

5.12.1. Exercise 1

Write a Java program to read in the 10 numbers in the example file Book1.csv provided above. The program
should sum all the numbers, find the lowest number, find the highest number, and computer the average. Upon
completion of the processing, the program should write a new text file named stats.txt with the information found
in the following format where xxx represents a number calculated above.

5.12.2. Exercise 2

Using the class Poem below. Write a complete Java program that creates three different objects of type Poem. The
program shall then open a text file named poems.txt for writing and write the information about each poem to the
text file. The program shall NOT write the toString() version of the object to the file, but write first the poem name
on a line and then the poet name on a second line for each poem.

The sum of the numbers is: xxx
The lowest number is: xxx
The highest number is : xxx
The average of the numbers is : xxx

/**
 * Poem.java
 *
 * A class representing information about a poem for use in Chapter 5 Exercise 2
 *
 */
publicpublic classclass Poem
{

 privateprivate String name;
 privateprivate String poet;

 /**
  * no-arg constructor
  */
 publicpublic Poem()
 {
  // initialize attributes
  name = "unknown";
  poet = "unknown";
 }

 /**
  * @return the name
  */
 publicpublic String getName()
 {
  returnreturn name;
 }

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 106 of 185http://itec2150.gitlab.io/

5.12.3. Exercise 3

Using the Poem class given in exercise 2, write a Java program to read from a text file named poem2.txt provided
below. The program shall read the name and poet of each poem, create an object of type Poem for each name/poet
pair and print all the read poem infor to the console.

5.13. Issue Tracker/Comments
Issue Tracker (https://github.com/hpark7/help_desk/issues)

 /**
  * @param name the name to set
  */
 publicpublic voidvoid setName(String name)
 {
  thisthis.name = name;
 }

 /**
  * @return the poet
  */
 publicpublic String getPoet()
 {
  returnreturn poet;
 }

 /**
  * @param poet the poet to set
  */
 publicpublic voidvoid setPoet(String poet)
 {
  thisthis.poet = poet;
 }

 @Override
 publicpublic String toString()
 {
  returnreturn "Poem [name=" + name + ", poet=" + poet + "]";
 }

}

We Real Cool
Gwendolyn Brooks
I Know Why the Caged Bird Sings
Maya Angelou
Hope is the Thing with Feathers
Emily Dickinson
The Road Not Taken
Robert Frost

https://github.com/hpark7/help_desk/issues


4/5/21, 10)50 PMIntermediate Programming

Page 107 of 185http://itec2150.gitlab.io/

6. Generics

6.1. Learning Outcomes
Students will be able to

1. Describe the benefits of generics

2. Create generic methods, generic classes and interfaces

6.2. Resources

6.2.1. Text

The Bastics of Java Generics (https://www.baeldung.com/java-generics) by baeldung

Generics (https://docs.oracle.com/javase/tutorial/java/generics/index.html) by Oracle

Generic Methods (https://docs.oracle.com/javase/tutorial/extra/generics/methods.html) by Oracle

Generics in Java (https://www.journaldev.com/1663/java-generics-example-method-class-interface)

Generic Programming (http://math.hws.edu/javanotes/c10/s1.html)

Raw Types (https://docs.oracle.com/javase/tutorial/java/generics/rawTypes.html)

Generics (https://docs.oracle.com/javase/tutorial/extra/generics/index.html) by Gilad Bracha

Generics: How They Work and Why They are Important
(https://www.oracle.com/technical-resources/articles/java/juneau-generics.html) by Josh Juneau

6.2.2. Videos

Java Generics (https://www.youtube.com/watch?v=1tKmzQh8g5E) by Deege U

Java Generics (https://www.youtube.com/watch?v=4ZO7uVon-kI) by Imtiaz Ahmad

6.3. Introduction
Generics is "to detect errors at compile time rather than at runtime." (Liang, 2018)

Generics is "to detect errors at compile time rather than at runtime." (Liang, 2018) In this chapter, you will learn
about Generics. In the previous chapters and open textbook (http://itec2140.ddns.net/), you learned about the ArrayList
class and Comparable interface. They are examples of a generic class and a generic interface. Generics enable
types to be parameters when defining classes, interfaces and methods. With this capability, you can define a class,
an interface or a method with a generic type that the compiler can replace with concrete types. This chapter
covers the following topics for generics:

Motivations and Benefits

Defining Generic Classes and Interfaces

Generic Methods

https://www.baeldung.com/java-generics
https://docs.oracle.com/javase/tutorial/java/generics/index.html
https://docs.oracle.com/javase/tutorial/extra/generics/methods.html
https://www.journaldev.com/1663/java-generics-example-method-class-interface
http://math.hws.edu/javanotes/c10/s1.html
https://docs.oracle.com/javase/tutorial/java/generics/rawTypes.html
https://docs.oracle.com/javase/tutorial/extra/generics/index.html
https://www.oracle.com/technical-resources/articles/java/juneau-generics.html
https://www.youtube.com/watch?v=1tKmzQh8g5E
https://www.youtube.com/watch?v=4ZO7uVon-kI
http://itec2140.ddns.net/


4/5/21, 10)50 PMIntermediate Programming

Page 108 of 185http://itec2150.gitlab.io/

Raw Types and Backward Compatibility

Wildcard Generic Types

Erasure

6.4. Motivations and Benefits
"The motivation for using Java generics is to detect errors at compile time." (Liang, 2018)

In chapter 6 from Programming Fundamentals (http://itec2140.ddns.net/#arraylists) , you learned about ArrayLists. The
ArrayList class (java.util.ArrayList) is generic and has been since JDK 1.5. Generic means that the class can be
reused with any reference data type. However, before JDK 1.5, ArrayList used Object as the data type so one can
add instances of arbitrary classes to the list. Such a pre-generic array list has two disadvantages. First, because its
elements are interpreted as instances of the topmost Object class, casting is required every time you use an
element as an object of its actual, intended type. Second, allowing heterogeneous objects in the list can cause type
errors that are not detected at compile time but cause exceptions at runtime. Since JDK 1.5, the ArrayList class has
been generic. Generics obviate the need of casting and allow for type checking at compile time rather than
runtime which eliminates potential run time exceptions. The class Main below demonstrates an exception caused
when using the pre-generic ArrayList which is not type-safe. In this example, list is meant as an array list of
integers. However, created as a raw type, it allows arbitrary objects to be added. If one mistakenly adds the string
"Strawberry" to the list by calling list.add("Straweberry"), a ClassCastException will occur at runtime when the
method printSum attempts to cast the string to an integer in the statement sum += (Integer) i; in order to compute
the sum of all elements which are expected to be integers.

 //before JDK 1.5
importimport java.util.ArrayListjava.util.ArrayList;

publicpublic classclass Main
{
    publicpublic staticstatic voidvoid main(String[] args)
    {
        ArrayList list = newnew ArrayList(); //<--  ArrayList without generic called raw type
        list.add(67);
        list.add(56);
        list.add(4);
        list.add("Straweberry"); //<-- it will throw the ClassCastException
        list.add(52);
        printSum(list);
    }

    privateprivate staticstatic voidvoid printSum(ArrayList n)
    {
        Integer sum = 0;
        forfor(Object i: n)
        {  //ArrayList (java.util.ArrayList) has the Object as a type
            sum += (Integer)i;//You need to type cast these to each particular data type every time
        }
    }
}

JAVA

http://itec2140.ddns.net/#arraylists


4/5/21, 10)50 PMIntermediate Programming

Page 109 of 185http://itec2150.gitlab.io/

The following class demonstrates the use of a parametrized type ArrayList<Integer> of the generic class
ArrayList<T>. Here the concrete argument type Integer takes the place of the formal type parameter T in the
creation of the array list, where the bracket notation <Integer> specifies that every element of the array list is an
instance of the Integer class. There is no need to cast when using the elements as integers. When one attempts to
add a non-Integer object (e.g. a string) to the list, the compiler will generate an error.

Let’s look at another scenario. What if you want to develop a container
(https://www.oracle.com/technical-resources/articles/java/juneau-generics.html) that has the ability to hold objects of various
types? First, you create a Container class as below.

//Since JDK 1.5 - this example shows how the generic types can be used.
importimport java.util.ArrayListjava.util.ArrayList;
publicpublic classclass Main
{
    publicpublic staticstatic voidvoid main(String[] args)
    {
        ArrayList<Integer> list = newnew ArrayList<>();  // <-- ArrayList with generic
        list.add(67);
        list.add(56);
        printSum(list);
    }

    privateprivate staticstatic voidvoid printSum(ArrayList<Integer> n)
    {
        intint sum = 0;
        forfor(intint i: n){
            sum += i;
        }
    }
}

JAVA

Basic form to create an instance of generic classclass

BaseType<Type> object = newnew BaseType<Type>();

For the type argument, we cannot use a primitive type (e.g. intint, charchar, doubledouble, booleanboolean).

JAVA

publicpublic classclass Container
{
    privateprivate Object obj;

    publicpublic Object getObj()
    {
        returnreturn obj;
    }

    publicpublic voidvoid setObj(Object obj)
    {
        thisthis.obj = obj;
    }
}

JAVA

https://www.oracle.com/technical-resources/articles/java/juneau-generics.html


4/5/21, 10)50 PMIntermediate Programming

Page 110 of 185http://itec2150.gitlab.io/

The following ContainerWithoutGenerics class uses a container to store and retrieve values. The main method
creates a container and stores 23, "Java" and 45.98 in this order. So now 45.98 is the stored value. Then you need to
use an explicit cast to retrieve the value.

In contrast, the following Container class uses a generic type T. In the type parameter section <T>, the angle
brackets enclose the formal type parameter T.

The main method of the ContainerTester class creates a container object of the parametrized class
Container<String>, and stores different types of values to the container. The statement string.setObj(10.56) will
cause a compilation error as a result of type-checking.

importimport java.util.ArrayListjava.util.ArrayList;
importimport java.util.Listjava.util.List;

publicpublic classclass ContainerWithoutGenerics
{
    publicpublic staticstatic voidvoid main(String[] args)
    {
        Container obj = newnew Container();
        obj.setObj(23); //store an int which is autoboxed to an Integer object
        obj.setObj("Java");//then store a string
        obj.setObj(45.98);//then store an double which is autoboxed to a Double object - current value

        List list = newnew ArrayList();
        list.add(obj);

        Double doubleValue = (Double)((Container)list.get(0)).getObj(); //current value is a double value
        System.out.println("doubleValue: " + doubleValue);
    }
}

JAVA

publicpublic classclass Container<T>
{
    privateprivate T obj;

    publicpublic T getObj()
    {
        returnreturn obj;
    }

    publicpublic voidvoid setObj(T obj)
    {
        thisthis.obj = obj;
    }
}

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 111 of 185http://itec2150.gitlab.io/

Following class (a) is to identify if a person(e.g. Joe, Jesse) is an employee of classes: Microsoft, Apple, Google, or

Adobe. The purpose of the program is to make sure only correct Company type where the employee is working.
However, even though Google object named joe is created but you still can add joe to the company Apple and (b)
is to show how generic class (Company<T>) is useful to fix the bug from the code (a).If you see Main class(b), you
only can add employees from correct company. If _ Jesse_ is an employee of Microsoft, addEmployee() can only
take Jesse.

publicpublic classclass ContainterTester
{
    publicpublic staticstatic voidvoid main(String[] args)
    {
        Container<String> string = newnew Container<String>();
        string.setObj("Cupertino"); //Correct type value - String
        string.setObj(10.56); //won't compile because 10.56 is not a string value but a double value.
    }
}

JAVA

a.
importimport java.util.ArrayListjava.util.ArrayList;

publicpublic classclass Main
{
    publicpublic staticstatic voidvoid main(String[] args)
    {
        Google joe = newnew Google("Joe"); // Joe is an employee of Google
        Microsoft jesse = newnew Microsoft("Jesse");
        Adobe bill = newnew Adobe("Bill");

        Company google = newnew Company("Google");
        google.addEmployee(joe);
        google.addEmployee(jesse);
        google.addEmployee(jesse);

        Company apple = newnew Company("Apple");
        apple.addEmployee(joe); //joe is an object of Google not Apple but still you can pass joe in 
addEmployee().
        apple.addEmployee(bill);

    }
}
    classclass Employee
    {
        privateprivate String name;

        publicpublic Employee(String name)
        {
            thisthis.name = name;
        }

        publicpublic String getName()
        {
            returnreturn name;
        }

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 112 of 185http://itec2150.gitlab.io/

    }
    classclass Google extendsextends Employee
    {
        publicpublic Google(String name) {//name is an employee name
            supersuper(name);
        }
    }

    classclass Adobe extendsextends Employee
    {
        publicpublic Adobe(String name)
        {
            supersuper(name);
        }
    }

    classclass Company
    {
        privateprivate String name;
        privateprivate ArrayList<Employee> eList = newnew ArrayList<>();
        publicpublic Company(String name)
        {
            thisthis.name = name;
        }

        publicpublic String getName()
        {
            returnreturn name;
        }

        publicpublic booleanboolean addEmployee(Employee employee)
        {
            ifif(eList.contains(employee))
            {
                System.out.println(employee.getName() +  " is already confirmed as an employee of " + 
thisthis.name);
                returnreturn falsefalse;
            }
            elseelse {
                eList.add(employee);
                System.out.println(employee.getName() + " is an employee of  " + thisthis.name);
                returnreturn truetrue;
            }
        }
    }

    classclass Microsoft extendsextends Employee
    {
        publicpublic Microsoft(String name){//name is an employee name
            supersuper(name);
        }
    }

b.

importimport java.util.ArrayListjava.util.ArrayList;

publicpublic classclass Main
{
    publicpublic staticstatic voidvoid main(String[] args)



4/5/21, 10)50 PMIntermediate Programming

Page 113 of 185http://itec2150.gitlab.io/

    {
        Google joe = newnew Google("Joe");
        Microsoft jesse = newnew Microsoft("Jesse");
        Adobe bill = newnew Adobe("Bill");

        Company<Google> google = newnew Company("Google");
        google.addEmployee(joe);
       //google.addEmployee(jesse);
       //jesse is an object of Microsoft so you cannot pass jesse in addEmployee() when it is called by google. 
(1)

      //google.addEmployee(bill); //same reason. (2)

         Company<Microsoft> microsoft = newnew Company("Microsoft");
        microsoft.addEmployee(jesse);
       // microsoft.addEmployee(bill); //same reason (3)
        //microsoft.addEmployee("Bill"); //(4) you also cannot pass a string to addPlayer() method.

    }
}
classclass Employee
{
    privateprivate String name;

    publicpublic Employee(String name)
    {
        thisthis.name = name;
    }

    publicpublic String getName()
    {
        returnreturn name;
    }
}

classclass Google extendsextends Employee
{
    publicpublic Google(String name)
    { //name is an employee name
        supersuper(name);
    }
}

classclass Adobe extendsextends Employee
{
    publicpublic Adobe(String name)
    {
        supersuper(name);
    }
}

classclass Company<T>
{
    privateprivate String name;
    privateprivate ArrayList<T> eList = newnew ArrayList<>();
    publicpublic Company(String name)
    {
        thisthis.name = name;
    }

    publicpublic String getName()



4/5/21, 10)50 PMIntermediate Programming

Page 114 of 185http://itec2150.gitlab.io/

In this program b, when you declare google.addEmployee(jesse) or google.addEmployee(bill) or

microsoft.addEmployee(bill) by trying to pass incorrect type object or microsoft.addEmployee("Bill") by
trying to pass a string "Bill", java will show errors (see (1),(2),(3),(4)). This is what we have defined the
addEmployee() method in Company<T> (see c. below). So the Company<T> class require us to use Employee
class or a subclass of Employee. And also String type parameter is not taken from the addEmployee() method.
Instead, it is taking generic type object(T employee).

    {
        returnreturn name;
    }

    publicpublic booleanboolean addEmployee(T employee)
    {
        ifif(eList.contains(employee))
        {
            System.out.println((((Employee)employee).getName() +  " is already confirmed as an employee of " + 
thisthis.name));
            returnreturn falsefalse;
        }
        elseelse
        {
            eList.add(employee);
            System.out.println((((Employee)employee).getName() + " is an employee of  " + thisthis.name));
            returnreturn truetrue;
        }
    }
}

classclass Microsoft extendsextends Employee
{
    publicpublic Microsoft(String name)
    {
        supersuper(name);
    }
}

c.
publicpublic booleanboolean addEmployee(T employee)
{
        ifif(eList.contains(employee))
        {
            System.out.println((((Employee)employee).getName() +  " is already confirmed as an employee of " + 
thisthis.name));
            returnreturn falsefalse;
        }
        elseelse
        {
            eList.add(employee);
            System.out.println((((Employee)employee).getName() + " is an employee of  " + thisthis.name));
            returnreturn truetrue;
        }
    }

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 115 of 185http://itec2150.gitlab.io/

In a nutshell, the key benefit of generics is to enable errors to be detected at compile time rather than at runtime
(ensuring compile-time safety). A generic class or method permits you to specify allowable types of objects that the
class or method can work with. If you attempt to use an incompatible object, the compiler will detect that error.
Generics also helps to reuse the code for any type we want to use.

6.5. Defining Generic Classes
As you have seen from multiple examples above, here is a simple example of defining Generic class:
GenericClass<T> and a tester program.

6.5.1. Type Parameters/Type Variables

"Type parameters (a.k.a. type variables) are used as placeholders to indicate that a type will be assigned to the
class at runtime."(Juneau, 2014)

By convention, type parameters are a single uppercase. Following list is the standard type parameters:

/**
 * Class:GenericClass
 * @param <T>
 */
//Use <> to specify parameter type and define generic class
publicpublic classclass GenericClass<T>
{

    //Type T reference variable named object declaration.
    T object;
    //constructor
    GenericClass(T object)
    {
        thisthis.object = object;
    }

    publicpublic T getObject()
    {
        returnreturn thisthis.object;
    }
}

publicpublic classclass Main {
    publicpublic staticstatic voidvoid main(String[] args)
    {
        GenericClass<String> stringObject = newnew GenericClass<String>("\"String Value and check constructor 
param\"");
        System.out.println(stringObject.getObject());

        GenericClass<Integer> integerObject = newnew GenericClass<Integer>(23); // unboxing of new Integer(23);
        System.out.println(integerObject.getObject());
    }
}

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 116 of 185http://itec2150.gitlab.io/

E: Element

K: Key

N: Number

T: Type

V: Value

S,U,V in a multiparameter situation.

6.5.2. How to Use Generics?

1. Create a generic class: public class GenericClass<T> { … }

2. Instantiate the object. Each of Type parameter (in this case, it is T) is replaced with the Integer type.
GenericClass<Integer> integerObject = new GenericClass<Integer>();

3. Generics can also be used within constructors to pass type parameters for class field initialization.
GenericClass ob1 = new GenericClass(3); GenericClass ob2 = new GenericClass("Georgia");

4. Generics has raw type for backward compatibility. It will eliminate type-checking at compile time.
GenericClass rawRef = new GenericClass();

5. Generics does not support sub-typing List<Number> numbers = new ArrayList<Integer>(); //won’t compile.
Integer isa subtype of Number. List<Integer> numbers = new ArrayList<Integer>();

6.5.3. Defining Generic Interfaces

Here are two examples of using generics with interfaces List and Iterator
(https://docs.oracle.com/javase/tutorial/extra/generics/simple.html) in the package java.util:

6.6. Generic Methods
As you define generic classes, and interfaces, you can also use generic types to define generic methods. To declare
a generic method named print(), you place the generic type <E> after the keyword static in the method header
and static (class) and non-static (instance) methods are allowed.

 publicpublic interfaceinterface List<E>
 {
        voidvoid add(E x);
        Iterator<E> iterator();
    }

 publicpublic interfaceinterface Iterator<E>
 {
        E next();
        booleanboolean hasNext();
    }

JAVA

publicpublic staticstatic <E> voidvoid print(E[] list) { //... }
JAVA

https://docs.oracle.com/javase/tutorial/extra/generics/simple.html


4/5/21, 10)50 PMIntermediate Programming

Page 117 of 185http://itec2150.gitlab.io/

Following NonGenericMethodDemo program has overloaded print() methods to print different types of arrays
(Integer, Double, Character, and String).

publicpublic classclass NonGenericMethodDemo
{
    publicpublic staticstatic voidvoid main(String[] args)
    {

        // create arrays of Integer, Double, Character, and String
        Integer[] integerArray = {1, 2, 3, 4};
        Double[] doubleArray = {2.1, 22.2, 31.65, 10.5};
        Character[] characterArray = {'G', 'E', 'N', 'E', 'R','I','C','S'};
        String[] stringArray =  {"Lawrenceville", "Duluth", "Chicago", "New York", "Atlanta"} ;

        System.out.println("Array integerArray contains:");
        print(integerArray); // pass an Integer array
        System.out.println("Array doubleArray contains:");
        print(doubleArray); // pass a Double array
        System.out.println("Array characterrArray contains:");
        print(characterArray); // pass a Character array
        System.out.println("Array stringArray contains:");
        print(stringArray); // pass a Character array
    }

    /**
     * method print to print Integer array
     * @param arr
     */
    publicpublic staticstatic voidvoid print(Integer[] arr)
    {
        // display array elements
        forfor (Integer element : arr)
            System.out.print(element + " ");

        System.out.println();
    }

    /**
     * method print to print Double array
     * @param arr
     */
    publicpublic staticstatic voidvoid print(Double[] arr)
    {
        // display array elements
        forfor (Double element : arr)
            System.out.print(element + " ");

        System.out.println();
    }

    /**
     * method print to print Character array
     * @param arr
     */
    publicpublic staticstatic voidvoid print(Character[] arr)
    {
        // display array elements
        forfor (Character element : arr)
            System.out.print(element + " ");

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 118 of 185http://itec2150.gitlab.io/

While each print() method above is written for a different data type, their code is otherwise identical and uses a
for-each loop to display array elements. By using generics, we can write a single generic print() method for all
data types with a generic type E. The header of the generic method is public static <E> void print(E[] arr). A
complete GenericMethodDemo program is provided as follows. Based on the types of the arguments passed to
the generic method, the compiler handles each method call appropriately. The outputs of GenericMethodDemo

and MethodWithoutGenerics are identical.

        System.out.println();
    }

    /**
     * method print to print String array
     * @param arr
     */
    publicpublic staticstatic voidvoid print(String[] arr)
    {
        forfor(String element: arr){
            System.out.print(element + " ");
        }
    }
}

publicpublic classclass GenericMethodDemo
{
    publicpublic staticstatic voidvoid main(String[] args)
    {
      // create arrays of Integer, Double, Character, and String
        Integer[] integerArray = {1, 2, 3, 4};
        Double[] doubleArray = {2.1, 22.2, 31.65, 10.5};
        Character[] characterArray = {'G', 'E', 'N', 'E', 'R','I','C','S'};
        String[] stringArray =  {"Lawrenceville", "Duluth", "Chicago", "New York", "Atlanta"} ;

        System.out.println("Array integerArray contains:");
        print(integerArray); // pass an Integer array
        System.out.println("Array doubleArray contains:");
        print(doubleArray); // pass a Double array
        System.out.println("Array characterrArray contains:");
        print(characterArray); // pass a Character array
        System.out.println("Array stringArray contains:");
        print(stringArray); // pass a Character array
    }

    publicpublic staticstatic <E> voidvoid print(E[] arr)
    {
          //  System.out.println(Arrays.toString(list));
            forfor(E element: arr)
            {
             System.out.print(element + " ");
            }
            System.out.println();
    }
}

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 119 of 185http://itec2150.gitlab.io/

6.6.1. The Bounded Generic Type

A generic type can be specified as a subtype of another superclass type. This subtype is called bounded. Let’s say if
you want to restrict the types that can be used as type arguments in a parametrerized type. It may be more clear to
know how to declare a bounded type parameter. First, list the type parameter’s name followed by the extends
keyword and by its upper bound or superclass. For example, if a method operates on numbers, you may want to
make it only accept instances of Number or its subclasses like <T extends Number>

If you see (1) from b (see below), Company class takes a generic type T parameter and this example shows that we
can use a single bound when we specify the Company type T parameter. So it is restricting Company to being
created for objects that type T is inherited from the Employee class or some class of employee only. Java allows
multiple bound. As a subclass is inherited from one superclass and implements from multiple interfaces, same
rule applies.

* <T extendsextends superclass>
//this class only accepts type parameters as any class which extends superclass or superclass itself. It means 
that if any other type is passing
//it will cause compile time error.

JAVA

a.
classclass Company<T>
{
    privateprivate String name;
    privateprivate ArrayList<T> eList = newnew ArrayList<>();
    publicpublic Company(String name)
    {
        thisthis.name = name;
    }

    publicpublic String getName()
    {
        returnreturn name;
    }

    publicpublic booleanboolean addEmployee(T employee)
    {
        ifif(eList.contains(employee))
        {
            System.out.println((((Employee)employee).getName() +  " is already confirmed as an employee of " + 
thisthis.name));
            returnreturn falsefalse;
        }
        elseelse {
            eList.add(employee);
            System.out.println((((Employee)employee).getName() + " is an employee of  " + thisthis.name));
            returnreturn truetrue;
        }
    }
}

b.
classclass Company<T extendsextends Employee>
{  //(1)
    privateprivate String name;

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 120 of 185http://itec2150.gitlab.io/

6.7. Raw Types and Backward Compatibility
"A generic class or interface used without specifying a concrete type, called a raw type. This raw type enables
backward compatibility with earlier version of java (before JDK 1.5)" (Liang, 2018) The raw types should be used
for backward compatibility and eliminate all the benefits of using a generic class. Basically raw types behaves
exactly like they were before generics. So when we us ArrayList without generic type and with raw type (see
example 1), code runs just fine and it is legal at compile-time. This is the drawback discussed in the motivations
and benefits in 6.4 in this chapter.

example 1.

example 2.

    privateprivate ArrayList<T> eList = newnew ArrayList<>();
    publicpublic Company(String name)
    {
        thisthis.name = name;
    }

    publicpublic String getName()
    {
        returnreturn name;
    }

    publicpublic booleanboolean addEmployee(T employee)
    {
        ifif(eList.contains(employee))
        {
            System.out.println(employee.getName() +  " is already confirmed as an employee of " + thisthis.name); 
//
            returnreturn falsefalse;
        }
        elseelse
        {
            eList.add(employee);
            System.out.println(employee.getName() + " is an employee of  " + thisthis.name);
            returnreturn truetrue;
        }
    }
}

ArrayList list = newnew ArrayList(); //raw type  -- equivalent to -- ArrayList<Object> list = new ArrayList<Object>
();

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 121 of 185http://itec2150.gitlab.io/

6.8. Wildcard Generic Types
"You can use unbounded wildcards, bounded wildcards, or lower bound wildcards to specify a range for a generic
type."(Liang, 2018) These are useful in certain cases but not used as often as bounded generic types.

The first type of wildcard is called the unbounded wildcard type. It is specified using the wildcard character form
? and again it is called the unbounded wildcard
(https://docs.oracle.com/javase/tutorial/java/generics/unboundedWildcards.html). ? is the same as ? extends Object (e.g. List<?
>). Unbounded type is useful when a method does not specify with the actual type of the parameter taking. For
example, when you invoke a method with unbounded type, it means that the method will take some specific type
but it does not know till you add specific type. From the following example, printList() method takes list with
unspecified type and it is a list of unbounded/non-specific type passed as a parameter to a method that takes a list
of unbounded type.

Container<T> is a generic Container classclass

public classclass Container<T>
{
   publicpublic voidvoid set(T t){ // }
}

To create a parameterized type of *_Container<T>_*, you must provide a concrete type argument forfor the generic 
type parameter T as below.
Container<Double> doubleContainer = newnew Container<>();

If the concrete type is omitted, you will create a raw type of Container<T> and it is

Container rawContainer = newnew Container();

*Using raw types are not safe, you should avoid using raw types.*

JAVA

https://docs.oracle.com/javase/tutorial/java/generics/unboundedWildcards.html


4/5/21, 10)50 PMIntermediate Programming

Page 122 of 185http://itec2150.gitlab.io/

The second type of wildcard is called (upper)bounded wildcard
(https://docs.oracle.com/javase/tutorial/java/generics/upperBounded.html) and it is specified writing "? extends T" (e.g. <?
extends Foo> ). When you use upper-bound, argument can be any type or subclass of type.

The third type of wildcard is lower bounded wildcard
(https://docs.oracle.com/javase/tutorial/java/generics/lowerBounded.html) and it is specified writing "? super T" (e.g. <? super
Integer>)

publicpublic classclass UnboundedDemo
{
   publicpublic voidvoid printList(List<?> list)
    {
      forfor(Object e: list)
      {
        System.out.println(e);
      }
    }

   publicpublic staticstatic voidvoid main(String[] ags)
    {
       ArrayList<Integer> list1 = newnew ArrayList<>();
       list1.add(45);
       list1.add(5);
       list1.add(105);
       printList(list1);
       ArrayList<String> list2 = newnew ArrayList<>();
       list2.add("Banana");
       list2.add("Orange");
       list2.add("Apple");
       printList(list2);

     }
}

JAVA

Source: https://tudip.com/blog-post/java-generics-lower-upper-bound/
publicpublic staticstatic voidvoid validateStringTypes(Collection<? extendsextends String> collection){
        //Wild card with Upper bound
        // Accept collection of objects of type string or SUB-CLASS of String
    }

JAVA

Source: https://tudip.com/blog-post/java-generics-lower-upper-bound/
publicpublic staticstatic voidvoid validateTillStringType(Collection<? supersuper String> collection){
        //Wild card with Lower bound
        // Accept collection of objects of type string or SUPER-CLASS of String
    }

JAVA

https://docs.oracle.com/javase/tutorial/java/generics/upperBounded.html
https://docs.oracle.com/javase/tutorial/java/generics/lowerBounded.html


4/5/21, 10)50 PMIntermediate Programming

Page 123 of 185http://itec2150.gitlab.io/

6.9. Erasure (https://docs.oracle.com/javase/tutorial/java/generics/erasure.html)

"The information on generics is used by the compiler but is not available at runtime. This is called type erasure."
by Daniel Liang.

Generics were introduced to the Java language to provide tighter type checks at compile time and to support
generic programming. To implement generics, the Java compiler applies type erasure to:

Replace all type parameters in generic types with their bounds or Object if the type parameters are unbounded.
The produced bytecode, therefore, contains only ordinary classes, interfaces, and methods.

Insert type casts if necessary to preserve type safety.

Generate bridge methods to preserve polymorphism in extended generic types.

Type erasure ensures that no new classes are created for parameterized types; consequently, generics incur no
runtime overhead.

6.9.1. Class Type Erasure

During the type erasure process, the Java compiler erases all type parameters and replace all type parameters in
generic types with their bounds or Object if the type parameters are unbounded. The produced bytecode,
therefore, contains only ordinary classes, interfaces, and methods.Insert type casts if necessary to preserve type

* complete example.
importimport java.util.ArrayListjava.util.ArrayList;
importimport java.util.Collectionjava.util.Collection;

publicpublic classclass GenericsDemo {

    publicpublic staticstatic voidvoid validateTillStringType(Collection<? supersuper String> collection){
        //Wild card with Lower bound
        // Accept collection of objects of type string or SUPER-CLASS of String
    }

    publicpublic staticstatic voidvoid validateStringTypes(Collection<? extendsextends String> collection){
        //Wild card with Upper bound
        // Accept collection of objects of type string or SUB-CLASS of String
    }

    publicpublic staticstatic voidvoid main(String [] args){
        GenericsDemo.validateTillStringType(newnew ArrayList<Object>());//OK

//      GenericsDemo.validateTillStringType(new ArrayList<Integer>());//Error

//      GenericsDemo.validateStringTypes(new ArrayList<Object>());//Error

        GenericsDemo.validateStringTypes(newnew ArrayList<String>());//OK

    }

}

JAVA

https://docs.oracle.com/javase/tutorial/java/generics/erasure.html


4/5/21, 10)50 PMIntermediate Programming

Page 124 of 185http://itec2150.gitlab.io/

safety. Generate bridge methods to preserve polymorphism in extended generic types.Type erasure ensures that
no new classes are created for parameterized types; consequently, generics incur no runtime overhead."

6.9.2. Erasure of Generic Methods

When the compiler translates generic method print into bytecodes, it removes the type-parameter and replace the
type parameter with actual type. This process is known as erasure.

Source: https://www.baeldung.com/java-type-erasure[Baeldung]
publicpublic staticstatic  <E> booleanboolean containsElement(E [] elements, E element)
{
    forfor (E e : elements)
    {
        ifif(e.equals(element))
        {
            returnreturn truetrue;
        }
    }
    returnreturn falsefalse;
}

After the compilation, the the compiler replaces the unbound type parameter E with Object.

publicpublic classclass Stack
{
    privateprivate Object[] stackContent;

    publicpublic Stack(intint capacity)
    {
        thisthis.stackContent = (Object[]) newnew Object[capacity];
    }

    publicpublic voidvoid push(Object data)
    {
        // ..
    }

    publicpublic Object pop()
    {
        // ..
    }
}

JAVA

print method with type parameter.

 publicpublic staticstatic <E> voidvoid print(E[] arr)
 {
    forfor (E element : arr)
    {
        System.out.printf("%s ", element);
    }
}

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 125 of 185http://itec2150.gitlab.io/

6.10. Key Terms
bounded type: A generic type being specified as a subtype of another type

upper bounded wildcard (<? extends E>): bounds with upper inheritance constraint by using etends keyword.

lower bound wildcard (<? super E>): bounds is using the wildcard character (?), following by the super keyword by
its lower bound.

unbounded wildcard(<?>): bounds which is specified using <?>. this is called unknown type.

raw type: a name of a generic class or interface without any type arguments.

type erasure: the process of type checking only at compile time and discarding the element type information at
runtime.

6.11. Exercises

6.11.1. Exercise 1 (Palindrome)

Write a generic method to count the number of palindromes in a collection. Step 1: Use a generic ITester interface
with a method name test defined as follows:

public interface ITester<T> { public boolean test(T obj); }

Step 2: Write Palindrome class and this class implements generic ITester interface and define the test method to
test if the value is a palindrome or not.

Palindrome (https://www.merriam-webster.com/dictionary/palindrome) is a word, verse, or setence or a number that reads
the same backward or forward (such as "Race car","Madam I’m Adam.","1881","Amore, Roma","King, are you glad
you are king?" Step 3: Write a Counter class and define a generic method named countIf. This method will count
the number of elements in a collection that have palindromes and also will ignore non-alpha characters and white
spaces.

6.11.2. Exercise 2

Write a generic method to swap the positions of two different elements in an array.

By defaultdefault all generic types are replaced with type Object as you see follows.
Upon compilation, the compiler replaces the type paramter E with Object.

publicpublic staticstatic voidvoid print(Object[] arr)
{
    forfor (Object element : arr)
    {
        System.out.printf("%s ", element);
    }
}

JAVA

https://www.merriam-webster.com/dictionary/palindrome


4/5/21, 10)50 PMIntermediate Programming

Page 126 of 185http://itec2150.gitlab.io/

6.11.3. Exercise 3

Write a generic method that displays array element

6.11.4. Exercise 4

Write a generic method selectionSort based on the selectionSort method as follows. Use the generic swap method
from the Exercise 2. Use <T extends Comparable<T>> in the type-parameter section for this method. Make sure use
compareTo to compare the objects of the type that T represents.

6.11.5. Exercise 5

Write a test program that inputs, sorts, and outputs an Double array and Integer array. Use the generic swap
method, generic displayArray method, and generic selectionSort method.

Here is the sample run:

6.12. References
Baeldung.(2020). The Bastics of Java Generics. Retrieved from https://www.baeldung.com/java-generics Juneau, J.
(2014). Generics: _How They Work and Why They Are Important, Retrieved https://www.oracle.com/technical-
resources/articles/java/juneau-generics.html.

Liang, D. (2018). Introduction to Java: Programming and Data Structures (11th ed.). Pearson

6.13. Issue Tracker/Comments
Issue Tracker (https://github.com/hpark7/help_desk/issues)

    publicpublic staticstatic voidvoid selectionSort(doubledouble[] list)
    {
        forfor (intint i = 0; i < list.length - 1; i++)
        {
            intint smallest = i;
            forfor (intint index = i + 1; index < list.length; index++)
                ifif (list[index] < list[smallest])
                    smallest = index;
            swap(list, i, smallest); // swap smallest element into position
        }
    }

JAVA

Original Double array elements
[2.3, 45.6, 4.5, 11.6, 2.0]
Double array elements after the selection sort
[2.0, 2.3, 4.5, 11.6, 45.6]
Original Integer array elements
[3, 56, 1, 12, 7, 90, 45, 23]
Double array elements after the selection sort
[1, 3, 7, 12, 23, 45, 56, 90]

https://www.baeldung.com/java-generics
https://www.oracle.com/technical-resources/articles/java/juneau-generics.html
https://github.com/hpark7/help_desk/issues


4/5/21, 10)50 PMIntermediate Programming

Page 127 of 185http://itec2150.gitlab.io/

7. Recursion

7.1. Learning Outcomes
Understand the basics of recursion

Learn why recursion can be useful

Learn how to apply recursion to solve simple problems

Learn why you should not use recursion for fibonacci numbers and factorials

7.2. Resources

7.2.1. Text and Tutorials

Introduction to Programming Using Java- Eighth Edition by David J. Eck: Chapter 9
(http://math.hws.edu/javanotes/c9/s1.html) Chapter 9 - Linked Data Structures and Recursion

Java, Java, Java: Object-Oriented Problem Solving by Ralph Morelli and Ralph Walde:
http://www.cs.trincoll.edu/~ram/jjj/jjj-os-20170625.pdf Chapter 12 Recursive Problem Solving

7.2.2. Videos

Java Recursion : https://www.youtube.com/watch?v=neuDuf_i8Sg

Algorithm Recursion : https://www.youtube.com/watch?v=KEEKn7Me-ms

7.3. Introduction
Recursion is an action that describes a method calling itself. The following is an simple example of recursion
which calculates the n-th fibonacci number

The fibonnacci sequence defines a sequence of numbers where the n-th number is the addition of the (n-1) th and
(n-2) th number. Notice that this recursive solution to calculating the fibonacci number is very slow. In fact, it is
much slower than the iterative (using loops) version.

The reason for this is because the same method call gets called over and over again. For example, calculating the
5th fibonnacci number would take 5! calls to getFib().

publicpublic intint getFib(intint num)
{
    ifif(num == 1 || num == 2)
    {
        returnreturn 1;
    }
    elseelse
    {
        returnreturn getFib(num - 1) + getFib(num + 2);
    }
}

JAVA
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

http://math.hws.edu/javanotes/c9/s1.html
http://www.cs.trincoll.edu/~ram/jjj/jjj-os-20170625.pdf
https://www.youtube.com/watch?v=neuDuf_i8Sg
https://www.youtube.com/watch?v=KEEKn7Me-ms


4/5/21, 10)50 PMIntermediate Programming

Page 128 of 185http://itec2150.gitlab.io/

Solving problems recursively may not always result in the most efficient solution but the reason recursion is
useful is because recursion can lead to solutions that are easy to understand and implement. (This will be
apparent in traversals in binary trees)

When solving programming recursively, you must think of the base case and the recursive case.

Base case: the simplest case to consider

Recursive case: calling the recursion method with a simplified (or smaller) value

For example, consider the problem of finding the reverse of a string.

Notice that the base case handles when the length of the string is zero. Of course, when the length of the string is
zero, the empty string is returned. In the recursive case, the same method is called again with a value that is
"closer" to the base case.

Here is another example where using recursion results in a simpler solution than the iterative version. The
problem is printing all binary numbers with n-digits.

The iterative version of printing all binary numbers is a bit more complicated and involves using a List.

publicpublic String getReverseString(String str)
{
   ifif (str.length() == 0)
   {
     returnreturn "";
   }
   elseelse
   {
     returnreturn str.substring(str.length()-1) + getReverseString(str.substring(0,str.length()-1));
   }
}

JAVA
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

publicpublic staticstatic voidvoid printBinaryNumber(String str, intint length)
{
    ifif (length == 0)
    {
        System.out.println(str);
        returnreturn;
    }
    printBinaryNumber(str + "0", length - 1);
    printBinaryNumber(str + "1", length - 1);
}

JAVA
 1
 2
 3
 4
 5
 6
 7
 8
 9
10



4/5/21, 10)50 PMIntermediate Programming

Page 129 of 185http://itec2150.gitlab.io/

This illustrates that recursion can lead to solutions that are easier to understand. With a bit of creativity you can
write every iterative solution to a recursive one and vice-versa. Please watch the following video as a review of the
basic concepts of recursion:

Algorithms: Recursion

7.4. Permutations and Combinations

publicpublic staticstatic voidvoid printBinaryNumberIterative(intint length)
{
    ArrayList<String> list = newnew ArrayList<String>();
    list.add("0");
    list.add("1");
    intint max = (intint) Math.pow(2, length);
    whilewhile (list.size() < max)
    {
        String temp = list.remove(0);
        list.add(temp + "0");
        list.add(temp + "1");
    }
    System.out.println(list);
}

JAVA
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

https://www.youtube.com/watch?v=KEEKn7Me-ms


4/5/21, 10)50 PMIntermediate Programming

Page 130 of 185http://itec2150.gitlab.io/

A famous application of recursion is found in generating permutations. For example, generating all the
permutations of the word "car" results in "car", "cra", "acr", "arc", "rca", and "rac". Notice that if there are n-
characters in a word, it will result in n! permutations. The following image illustrates how an recursion generates
the permutations.

Here is an example of generating the combinations of a string. This recursive solutions uses a helper method.

publicpublic staticstatic ArrayList<String> permutations(String str)
{
    ArrayList<String> result = newnew ArrayList<>();

    ifif (str.length() == 1)
    {
        result.add(str);
        returnreturn result;
    }

    forfor (intint i = 0; i < str.length(); i++)
    {
        String part = str.substring(0, i) + str.substring(i + 1);
        ArrayList<String> permutes = permutations(part);
        forfor (String s : permutes)
        {
            result.add(str.charAt(i) + s);
        }

    }
    returnreturn result;
}

JAVA
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22



4/5/21, 10)50 PMIntermediate Programming

Page 131 of 185http://itec2150.gitlab.io/

7.5. Using Recursion in Mazes

publicpublic staticstatic ArrayList<String> combinations(String str)
{
    ArrayList<String> combos = newnew ArrayList<String>();
    forfor (intint i = 1; i <= str.length(); i++)
    {
        combinations(i, str, combos);
    }
    returnreturn combos;
}

publicpublic staticstatic ArrayList<String> combinations(intint length, String str, ArrayList<String> combos)
{
    ifif (str.length() == length)
    {
        ifif (!combos.contains(str))
        {
            combos.add(str);
        }
    }
    elseelse
    {
        forfor (intint i = 0; i < str.length(); i++)
        {
            String shortened = str.substring(0, i) + str.substring(i + 1);
            combos = combinations(length, shortened, combos);
        }
    }
    returnreturn combos;
}

JAVA
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29



4/5/21, 10)50 PMIntermediate Programming

Page 132 of 185http://itec2150.gitlab.io/

An interesting problem that can be solved with recursion are mazes. Mazes can be solved very naturally with
recursion as play itself maps to recursion very well. The idea is to try out all paths and select the path that leads to
the exit. The following code illustrates how recursion can be used to find the solution to a maze.

7.6. Summary
Make sure you have a base case and checks to avoid infinite recursion

Understand that you can rewrite any recursive method iteratively and vice-versa

Be able to solve simple problems using recursion

7.7. Key Terms
recursion: computation that invovles a function (or method) calling itself

base case: the simplest case in a recursive solution

recursive case: mirrors the overall solution but with simplified input values

direct recursion: when the same method calls itself

indirect recursion: when more than one method is involved in a recursion

recursive backtracking: when recursion is used to build a set of candidate solutions and a criteria is applied to
select the right ones

7.8. Exercises
1. Write a recursive method that reverses a string. For example, your method should print out "rac" given the

word "car".

2. Investigate how to draw a fractal using recursion.

3. Investigate the Tower of Hanoi puzzle and solve it using recursion.

publicpublic booleanboolean findPath(Maze maze, Point position)
JAVA

1



4/5/21, 10)50 PMIntermediate Programming

Page 133 of 185http://itec2150.gitlab.io/

7.9. Issue Tracker/Comments
Issue Tracker (https://github.com/hpark7/help_desk/issues)

https://github.com/hpark7/help_desk/issues


4/5/21, 10)50 PMIntermediate Programming

Page 134 of 185http://itec2150.gitlab.io/

8. Basic Data Structures and Sorting

8.1. Learning Objectives
Students will be able to:

Define and describe four basic abstract data structures: List, Stack, Queue and Priority Queue.

Apply the basic abstract data structures to devise efficient algorithms for solving computational problems.

Implement efficient algorithms involving the data structures, using the classes and methods for the data
structures from the Java APIs.

Describe and implement six sorting algorithms: Selection Sort, Insertion Sort, Bubble Sort, Heap Sort, Merge
Sort and Quick Sort.

Compare the sorting algorithms in terms of efficiency and other properties such as stability.

Apply Arrays.sort, Arrays.sort and Collections.sort to provide efficient solutions to problems where sorting is
beneficial.

8.2. Resources

8.2.1. Text

Thomas Cormen, Chalres Leiserson, Ronald Rivest and Clifford Stein. Introduction to Algorithms, 3rd Edition.
The MIT Press.

Daniel Liang. Introduction to Java Programming and Data Structures, 11th Edition. Pearson.

8.3. Introduction
In programming, a data structure is a means to organize a collection of data. A data structure not only stores the
data, but also provides methods for accessing and manipulating its elements. When you have a single or a few
data items, you can simply declare a variable or create an object to represent each item. However, doing so is
clearly infeasible when you have a large collection, say of a million data items. In this situation, how the data is
represented and organized is crucial for the correctness and efficiency of the program.

The first data structure you have learned, and perhaps the simplest of all data structures, is an array. An array is a
sequence of elements of the same data type occupying contiguous locations in the memory. It is fundamental and
very commonly used, due to its simplicity and the efficiency in accessing any element of the array. However, a
major drawback of an array is that it is static; that is, once an array is declared, its length is fixed, and one cannot
add a new element to the array or remove an existing element from the array. For the many applications where
the data needs to grow (and shrink) dynamically, we desire a dynamic data structure that supports efficient
operations for insertion and deletion, among other important operations.

In this chapter, we introduce four basic dynamic data structures: lists, stacks, queues and priority queues. The
focus here is to define them and describe their usage. In ITEC 3150: Advanced Programming, you will learn their
implementations as well as their efficiency.



4/5/21, 10)50 PMIntermediate Programming

Page 135 of 185http://itec2150.gitlab.io/

8.4. Lists
Akin to an array, a list is a sequentially ordered collection of (possibly duplicate) objects. A fundamental difference
between a list and an array, is that a list is dynamic in the sense that one can add new elements to a list and
remove existing elements from a list, whereas an array is static. Moreover, adjacent elements in a list may not
reside in contiguous locations in the memory, as in the case of a linked list that is discussed below.

8.4.1. The Java List Interface

The Java List interface, which is contained in the java.util package, extends the Collection interface and provides
an abstraction of a list data structure described above. You can find all the methods of the List interface as well as
their detailed descriptions at https://docs.oracle.com/javase/8/docs/api/java/util/List.html.

Below we summarize some commonly used methods in the interface List<E>, where E is the generic type of the
list elements specified at the creation of the list.

boolean add(E e). Adds the specified element to the end of the list, and returns true if the element is
successfully added.

boolean addAll(Collection<? extends E> c). Adds all the elements of the specified collection to the end of the
list in the order defined by the collection’s iterator, and returns true if all the elements are successfully added.
The method throws a NullPointerException if the specified collection is null.

void add(int index, E e). Adds the specified element to the list at the specified index. The method throws an
IndexOutOfBoundException if the specified index is out of range, i.e. if (index < 0 || index > size()).

E remove(int index). Removes and returns the element at the specified index from the list. The method throws
an IndexOutOfBoundException if the specified index is out of range, i.e. if (index < 0 || index >= size()).
Notice the slight difference in the out-of-range condition between add and remove.

boolean remove(Object o). Removes the first occurrence of the specified object from the list, if the object
exists. The method returns true if the specified object is present in the list, and false otherwise.

E get(int index). Returns the element at the specified index in the list. The method throws an
IndexOutOfBoundException if the specified index is out of range, i.e. if (index < 0 || index >= size()).

E set(int index, E e). Replaces the element at the specified index with the specified element, and returns the
element previously stored at the specified index. The method throws an IndexOutOfBoundException if the
specified index is out of range, i.e. if (index < 0 || index >= size()).

boolean contains(Object o). Returns true if and only if the list contains the specified object.

int indexOf(Object o). Returns the index of the first occurrence of the specified object if the object is in the list,
and -1 otherwise.

int lastIndexOf(Object o). Returns the index of the last occurrence of the specified object if the object is in the
list, and -1 otherwise.

int size(). Returns the size of the list, i.e. the number of elements in the list.

boolean isEmpty(). Returns true if and only if the list is empty, i.e. size() == 0.

https://docs.oracle.com/javase/8/docs/api/java/util/List.html


4/5/21, 10)50 PMIntermediate Programming

Page 136 of 185http://itec2150.gitlab.io/

void clear(). Clears the list. Note that the implementation of this method need not remove the elements of the
list. All it needs is to create a new empty list.

boolean equals(Object o). Returns true if and only if the specified object is a list that contains the same
elements in the same order as this list.

ListIterator<E> listIterator(). Returns a list iterator starting at the beginning of the list that allows one to
traverse the list in both directions and manipulate the list en route. We will discuss the List Iterator in more
details, in the subsection devoted to it.

ListIterator<E> listIterator(int index). Returns a list iterator starting at the specified position in the list. The
method throws an IndexOutOfBoundsException if the index is out of range (index < 0 || index > size()).

8.4.2. The ArrayList and LinkedList Classes

ArrayList and LinkedList are the two classes that implement the List interface.

Array List

You already learned the ArrayList class in ITEC 2140: Programming Fundamentals (http://itec2140.gitlab.io/). You
learned how to create an ArrayList object and how to manipulate an ArrayList by calling its methods. To add to
your knowledge, we briefly describe here how an array list is implemented.

The ArrayList class implements a list with a resizable array. That is, the backing data structure of an ArrayList is
an array. The backing array is an instance variable of an ArrayList object and stores all the elements of the list.
Therefore internally, accessing an element of the array list by index, which is required for methods such as get(int
index) and set(int index, E e), is simply accessing the element in the backing array by index. When a new element
is added to the list and the backing array is about to be full, the add method would create a new larger array
whose length is 1.5 times the length of the (old) backing array, copy all the elements from the (old) backing array as
well as the new element to the new array, and make the new array the backing array. While resizing is an
expensive operation, such an event occurs infrequently.

Linked List

In a linked list, every list element, usually called a node, has a data field and maintains two pointers (i.e.
references) - one pointing to the previous node and the other pointing to the next node. There are two special
nodes - the head which is the first node of the list, and the tail which is the last node of the list. The node previous
to the head is null, so is the node next to the tail. The following figure depicts a linked list of integer elements.

http://itec2140.gitlab.io/


4/5/21, 10)50 PMIntermediate Programming

Page 137 of 185http://itec2150.gitlab.io/

In the figure, each square represents a node of the list. The leftmost node is the head and the rightmost one is the
tail. The number inside each node represents the value of its data, and the number above represents its index. At
each node, the arrow pointing to the right represents the pointer to the next node, and that pointing to the left
represents the pointer to the previous node. From each node one can directly access both neighbors by following
the pointers. The two neighbors are however the only nodes that are directly accessible from a node, because the
nodes of a linked list could reside in arbitrary memory locations, as opposed to contiguous memory locations as in
the case of an array list. Therefore, accessing elements of a linked list by index, which is required for methods such
as get(int index) and set(int index, E e), is a slow operation, as it requires to traverse the entire list to search for
the node at the specified index.

In principle, a linked list can be represented by either its head or its tail, because from either end one can traverse
the entire list. For convenience and efficiency however, a standard implementation, as the one for the Java
LinkedList class, tracks both the head and the tail of a linked list object as its private instance variables, as
illustrated by the two blue arrows in the above figure.

You can find all the methods of the LinkedList class as well as their detailed descriptions at
https://docs.oracle.com/javase/8/docs/api/java/util/LinkedList.html.

Because it is easy to access and update both ends of a linked list, in addition to the common methods of the List
interface, the LinkedList class provides the following methods involving just the head or the tail of a
LinkedList<E> object, where E is the generic type of the list elements.

void addFirst(E e). Adds the specified element to the head of the list. After this method, a new head is created
and points to the old head as its successor. The newly added element now resides at the head of the list.

void addLast(E e). Adds the specified element to the tail of the list. Same as the method add(E e) (except for the
return type). After this method, a new tail is created and points to the old tail as its predecessor. The newly
added element now resides at the tail of the list.

E removeFirst(E e). Removes and returns the element at the head of list. After this method, the successor (in
the original list) to the removed head becomes the new head of the list. The method throws a
NoSuchElementException if the list is empty.

E removeLast(E e). Removes and returns the element at the tail of list. After this method, the predecessor (in
the original list) to the removed tail becomes the new tail of the list. The method throws a
NoSuchElementException if the list is empty.

E getFirst(). Returns the data at the head of the list. The method throws a NoSuchElementException if the list
is empty.

E getLast(). Returns the data at the tail of the list. The method throws a NoSuchElementException if the list is
empty.

As the ArrayList<E> class, the LinkedList<E> class has the following two constructors.

The default constructor LinkedList() creates an empty linked list.

https://docs.oracle.com/javase/8/docs/api/java/util/LinkedList.html


4/5/21, 10)50 PMIntermediate Programming

Page 138 of 185http://itec2150.gitlab.io/

The constructor LinkedList(Collection<? extends E> c) creates a linked list that contains the elements of the
specified collection, in the same order as defined by the collection’s iterator.

8.4.3. The List Iterator

The ListIterator interface specifies an iterator that allows one to traverse a list in both directions and manipulate
the list en route. Its implementation depends on the type of the underlying list. When the list is an array list, its
iterator traverses the list using the indices of the backing array. When the list is a linked list, its iterator does so by
following the forward or backward pointers of the list nodes. The list iterator is crucial as it underlies every
method that requires to search the list.

At https://docs.oracle.com/javase/8/docs/api/java/util/ListIterator.html, you can find a detailed description of the
ListIterator<E> interface. Below we summarize its methods.

boolean hasNext(). Returns true if and only if the list has more elements in the forward direction (i.e. the
cursor is not at the end of the list).

E next(). Returns the next element in the list and advances the cursor forward, if the next element exists (i.e. if
hasNext() would return true). Otherwise the method throws a NoSuchElementException.

int nextIndex(). Returns the index of the next element in the list if the it exists (i.e. if hasNext() would return
true); otherwise returns the size of the list.

boolean hasPrevious(). Returns true if and only if the list has more elements in the backward direction (i.e. the
cursor is not at the beginning of the list).

E previous(). Returns the previous element in the list and moves the cursor backward, if the previous element
exists (i.e. if hasPrevious() would return true). Otherwise the method throws a NoSuchElementException.

int previousIndex(). Returns the index of the previous element in the list if the it exists (i.e. if hasPrevious()
would return true); otherwise returns -1.

void add(E e). Adds the specified element before the next element and after the previous element, if they both
exist. The element is added to the beginning (resp. end) of the list if the cursor is at the beginning (resp. end) of
the list.

void remove(). Removes the last element that was returned by next() or previous(). The method throws an
IllegalStateException if neither next() nor previous() has been called.

void set(E e). Replaces the last element returned by next() or previous() with the specified element. The
method throws an IllegalStateException if neither next() nor previous() has been called.

8.4.4. Putting Things Together By Examples

We now use a few code examples to illustrate how to manipulate lists with some of the aforementioned methods.

Basic list operations

In the first example below, we demonstrate how to create a list, add elements to and remove elements from a list,
and traverse a list in both directions using its list iterator.

https://docs.oracle.com/javase/8/docs/api/java/util/ListIterator.html


4/5/21, 10)50 PMIntermediate Programming

Page 139 of 185http://itec2150.gitlab.io/

The output of the program is

importimport java.util.*java.util.*;

publicpublic classclass ListDemo {

    publicpublic staticstatic voidvoid main(String[] args) {
        List<Integer> arrayList = newnew ArrayList<>();
        forfor (intint i = 0; i < 10; i++) {
            arrayList.add(i);
        }
        System.out.println("arrayList:");
        System.out.println(arrayList);

        arrayList.add(0, 10);
        arrayList.add(3, 30);
        System.out.println("\narrayList after add(0, 10) and add(3, 30):");
        System.out.println(arrayList);

        LinkedList<Object> linkedList = newnew LinkedList<>(arrayList);
        System.out.println("\nlinkedList:");
        System.out.println(linkedList);

        linkedList.add(3, "hello");
        linkedList.remove(4);
        System.out.println("\nlinkedList after add(3, \"hello\") and remove(4):");
        System.out.println(linkedList);

        linkedList.removeFirst();
        linkedList.removeLast();
        linkedList.removeFirst();
        linkedList.removeLast();
        System.out.println("\nlinkedList after the removeFirst and removeLast calls:");
        System.out.println(linkedList);

        linkedList.addFirst("red");
        linkedList.addFirst("green");
        linkedList.addFirst("blue");
        linkedList.addLast("red");
        linkedList.addLast("green");
        linkedList.addLast("blue");

        System.out.println("\nlinkedList after the addFirst and addLast calls:");
        System.out.println(linkedList);

        System.out.println("\nDisplay the linked list forward:");
        ListIterator<Object> listIterator = linkedList.listIterator();
        whilewhile (listIterator.hasNext()) {
            System.out.print(listIterator.next() + " ");
        }

        System.out.println("\n\nDisplay the linked list backward:");
        listIterator = linkedList.listIterator(linkedList.size());
        whilewhile (listIterator.hasPrevious()) {
            System.out.print(listIterator.previous() + " ");
        }
    }
}

JAVA
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56



4/5/21, 10)50 PMIntermediate Programming

Page 140 of 185http://itec2150.gitlab.io/

We now explain the above code and its output. On Lines 6 - 9, the program creates arrayList, an empty array list
of integer elements using the default constructor, then adds integers 0 to 9 to the list in this order. Then on Lines
13 - 14, it calls arrayList.add(0, 10) and arrayList.add(3, 30) to add the new elements 10 and 30 to the list at the
specified indices. Note that 10 is first added to the beginning (i.e. index 0) of the list, then 30 is added at index 3 of
the resulting list. The element 2, which was at index 3 before arrayList.add(3, 30) was called, now moves to the
next index down the list, so does every element after it.

Next on Line 18, the program creates linkedList, a linked list of Objects from arrayList, using the second
constructor LinkedList(Collection<? extends E> c). Since every class is a descendent of the Object class, this list
allows any object to be added. At this point, linkedList and arrayList contain the same elements in the same
order, even though internally they are represented differently. Note that when you use System.out.println to
print a list, it implicitly traverse the list using its iterator.

Next on Lines 22 - 23, the program calls linkedList.add(3, "hello") and linkedList.remove(4) to add the string
"hello" at index 3 of the list and then remove the element at index 4 from the resulting list. After "hello" is added at
index 3, the element 30, which was at index 3 before linkedList.add(3, "hello") was called, now moves to index 4.
Therefore, the subsequent call linkedList.remove(4) removes the element 30 from the list.

A careful reader may have noticed that unlike the object arrayList which was declared on Line 6 as a List, the
object linkedList was declared on Line 18 as a LinkedList. This is because we want to call methods on it that are
not specified in the List interface but pertain only to the LinkedList class. Next on Lines 27 - 30, the program calls
linkedList.removeFirst() and linkedList.removeLast(), then repeats them. This sequence of calls removes the
first two elements and the last two elements of the list.

arrayList:
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

arrayList after add(0, 10) and add(3, 30):
[10, 0, 1, 30, 2, 3, 4, 5, 6, 7, 8, 9]

linkedList:
[10, 0, 1, 30, 2, 3, 4, 5, 6, 7, 8, 9]

linkedList after add(3, "hello") and remove(4):
[10, 0, 1, hello, 2, 3, 4, 5, 6, 7, 8, 9]

linkedList after the removeFirst and removeLast calls:
[1, hello, 2, 3, 4, 5, 6, 7]

linkedList after the addFirst and addLast calls:
[blue, green, red, 1, hello, 2, 3, 4, 5, 6, 7, red, green, blue]

Display the linked list forward:
blue green red 1 hello 2 3 4 5 6 7 red green blue

Display the linked list backward:
blue green red 7 6 5 4 3 2 hello 1 red green blue



4/5/21, 10)50 PMIntermediate Programming

Page 141 of 185http://itec2150.gitlab.io/

Next on Lines 34 - 40, the program calls the methods linkedList.addFirst and linkedList.addLast to add strings
"red", "green" and "blue" to the front and back of the list respectively. Notice that addLast adds the new elements
to back in the order given, whereas addFirst adds the elements to the front in the reverse order.

Finally on Lines 44 - 54, the program prints linkedList forward and backward, explicitly using its list iterator to
traverse the list in both directions.

Multiple ways to traverse a list

The next example is a smiple method that computes the sum of the elements of a list.

The method sum explicitly uses the iterator of the given list to traverse the list and sums the elements en route.
Alternatively and equivalently, one can write the method using a foreach loop as follows.

Although the method sum2 does not explicitly use a list iterator, the foreach loop

implicitly uses the iterator of the given list to traverse the list. Therefore, even though they are written differently,
the methods sum and sum2 are identical in terms of execution.

The following is yet another way to write the method.

publicpublic staticstatic intint sum(List<Integer> list) {
    intint sum = 0;
    ListIterator<Integer> listIterator = list.listIterator();
    whilewhile (listIterator.hasNext()) {
        sum += listIterator.next();
    }

    returnreturn sum;
}

JAVA
1
2
3
4
5
6
7
8
9

publicpublic staticstatic intint sum2(List<Integer> list) {
    intint sum = 0;
    forfor (intint x : list) {
        sum += x;
    }

    returnreturn sum;
}

JAVA
1
2
3
4
5
6
7
8

    forfor (intint x : list) {
        sum += x;
    }

JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 142 of 185http://itec2150.gitlab.io/

However, while functionally equivalent to sum and sum2, the method sum3 should not be used because it is
inefficient when the given list is a linked list. As mentioned earlier, elements of a linked list are not directly
accessible by index. Therefore, in the loop of sum3, each call of list.get(i) requires a search over the entire list for
the element at index i. Hence when you need to iterate over a linked list, or a list in general whose type is
unknown, you should never do so by indices; instead you should either explicitly use the iterator of the list, or use
a foreach loop that would use the list iterator implicitly.

A foreach loop is nice because it is efficient and also simplifies the code when it is applicable. However, one
limitation of a foreach loop is that it only allows you to access a data structure but does not allow you to modify it.
Therefore, to efficiently search and update an entire list, you may still need to use its iterator explicitly.

Using an iterator to add and remove - an illustration

The next example is a simple method that removes all the odd numbers from a given list of integers. This method
must explicitly use the iterator of the list because of the need to modify the list.

In the last example of the section, we write a method

that adds the specified element at the specified index of the given list. The effect of addAtIndex(list, index,
element) is identical to that of list.add(index, element). However, addAtIndex(list, index, element) does not call
List.add(index, element) or use any method of the list other than its list iterator. It only calls three methods of the

publicpublic staticstatic intint sum3(List<Integer> list) {
    intint sum = 0;
    forfor (intint i = 0; i < list.size(); i++) {
        sum += list.get(i);
    }

    returnreturn sum;
}

JAVA
1
2
3
4
5
6
7
8

publicpublic staticstatic voidvoid removeOdds(List<Integer> list) {
    ListIterator<Integer> listIterator = list.listIterator();
    whilewhile (listIterator.hasNext()) {
        intint x = listIterator.next();
        ifif (x % 2 != 0) {
            listIterator.remove();
        }
    }
}

JAVA
1
2
3
4
5
6
7
8
9

<E> voidvoid addAtIndex(List<E> list, intint index, E element)
JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 143 of 185http://itec2150.gitlab.io/

list iterator: nextIndex(), next() and add(). Therefore, the code illustrates how to implement the add(index,
element) method for a list using its iterator only.

The method throws an IndexOutOfBoundsException if the specified index is outside the valid range of indices. If
the index is within the valid range, the while loop advances the cursor of the list iterator until the position
immediately before the element currently occupying the index if the index < list.size(), or to the end of the list if
the index equals list.size(). Once the method exits the loop, it adds the specified element at the right place.

The above implementation of the method always starts the list iterator at the front of the list. It is slow when the
specified index is near the back of the list. One can make an improvement to the method by starting the iterator at
the end that is closer to the specified index. We leave this as an exercise.

8.4.5. Notes on Efficiency: Array List vs. Linked List

We conclude the section on lists with some remarks on the efficiency of array lists and linked lists. Accessing
elements of an array list by index is very efficient because its backing data structure is an array. On the other
hand, as already mentioned, accessing elements of a linked list by index is very inefficient, because it requires to
search the entire list for the index. Consequently, for applications that require many random accesses to the
elements of your list, an array list is preferred.

On the other hand, a linked list is more efficient for adding to or removing from the two ends of the list. For an
array list, while removing from the back is fast and adding to the back is usually fast, adding to the front or
removing from the front is very slow as it requires to shift the entire list.

Lists are the simplest general-purpose data structures that allow one to search for and update elements, add new
elements and remove existing elements. However all the methods of a list requiring a search of an element, are
inefficient, whether the underlying list is an array list or a linked list. These methods include contains(Object o),
remove(Object o), indexOf(Object o), and several others. In the worst case one needs to search the entire list for
the given object of interest. Therefore, lists are not ideal for the many applications that require a large number of
search, update, insertion and deletion operations. For such applications you would desire an efficient data
structure such as a hash map or a balanced binary search tree, which you will learn in ITEC 3150: Advanced
Programming.

8.5. Stacks

publicpublic staticstatic <E> voidvoid addAtIndex(List<E> list, intint index, E element) {
    ifif (index < 0 || index > list.size()) {
        throwthrow newnew IndexOutOfBoundsException("Index " + index + " is out of bound");
    }

    ListIterator<E> listIterator = list.listIterator();
    whilewhile (listIterator.nextIndex() < index) {
        listIterator.next();
    }
    listIterator.add(element);
}

JAVA
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11



4/5/21, 10)50 PMIntermediate Programming

Page 144 of 185http://itec2150.gitlab.io/

A stack is a very special list with one end "closed", so that it is only accessible from the other end. To visualize a
stack, we envision a vertical stack of plates, where adding or removing is only possible at the top. See the following
image from Wikipedia (https://en.wikipedia.org/wiki/Stack_(abstract_data_type)).

A stack has two fundamental operations:

push, which adds an element to the top of the stack; and

pop, which removes the element at the top of the stack.

For convenience, a peek operation is introduced that allows one to read the element at the top without removing
it.

Because a stack is only accessible from the top, it has the property known as last in, first out (LIFO). That is, the
last element that enters the stack is the first element that comes out. In other words, every time the stack is
popped, the element that comes out is the most recently added element in the stack at that time.

8.5.1. The Stack Class

The Stack class is much simpler than the LinkedList or the ArrayList class. You can find a detailed description of
the Stack<E> class at https://docs.oracle.com/javase/8/docs/api/java/util/Stack.html. Below we summarize the
important methods of the class.

E push(E e). Adds the specified element to the top of the stack and returns the added element.

https://en.wikipedia.org/wiki/Stack_(abstract_data_type)
https://docs.oracle.com/javase/8/docs/api/java/util/Stack.html


4/5/21, 10)50 PMIntermediate Programming

Page 145 of 185http://itec2150.gitlab.io/

E pop(E e). Removes and returns the element at the top of the stack. The method throws an
EmptyStackException if the stack is empty.

E peek(E e). Returns the element at the top of the stack without removing it. The method throws an
EmptyStackException if the stack is empty.

boolean addAll(Collection<? extends E> c). Adds all the elements of the specified collection to the stack in the
order defined by the collection’s iterator, and returns true if all the elements are successfully added. The
method throws a NullPointerException if the specified collection is null.

int size(). Returns the size of the stack, i.e. the number of elements in the stack.

boolean empty(). Returns true if and only if the stack is empty (i.e. size() == 0).

void clear(). Clears the stack.

The very simple code below shows how to create a Stack object and use its methods.

The following is the output of the program, which demonstrates the LIFO nature of a stack

Integers 1 to 6 are added to the stack in this order. They come out in the reverse order due to the LIFO nature of
the stack. The following image from Wikipedia (https://en.wikipedia.org/wiki/Stack_(abstract_data_type)) demonstrates the
steps in the execution of the program.

importimport java.util.*java.util.*;

publicpublic classclass StackDemo {

    publicpublic staticstatic voidvoid main(String[] args) {
        Stack<Integer> stack = newnew Stack<>();

        forfor (intint i = 1; i <= 6; i++) {
            stack.push(i);
        }
        System.out.println("Stack after elements are added: ");
        System.out.println(stack);
        System.out.println();

        System.out.println("Popping the stack: ");
        whilewhile (!stack.empty()) {
            System.out.print(stack.pop() + " ");
        }
    }
}

JAVA
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

Stack after elements are added:
[1, 2, 3, 4, 5, 6]

Popping the stack:
6 5 4 3 2 1

https://en.wikipedia.org/wiki/Stack_(abstract_data_type)


4/5/21, 10)50 PMIntermediate Programming

Page 146 of 185http://itec2150.gitlab.io/

8.5.2. Applications of Stacks

A curious reader may ask at this point why we care about the LIFO property and what nontrivial tasks we can
accomplish with a stack. It turns out that stacks are surprisingly useful and powerful in programming despite their
simplicity. Here we very briefly mention some important applications of stacks in nontechnical terms.

A stack is used to implement the undo function of applications such as Microsoft Word. The app pushes all the
actions to a stack as they occur. When the user presses the undo button, the app pops the stack to undo the most
recent action.

A less obvious application is program execution. When a program is executed, the runtime system uses a call stack
to execute its functions or methods. Roughly speaking, the call stack maintains all the active methods awaiting
execution. The method at the top of the stack is the next one to execute. When a method (the caller) in execution
calls another method (the callee), the caller has to suspend its execution until the callee returns. Therefore, the
runtime system pushes the caller to the top of the stack and executes the callee. When the callee returns, the
system pops the stack and resumes the execution of the caller.

In Chapter 7 you learned the powerful technique of recursion that solves problems with a divide-and-conquer
strategy, where a method keeps calling itself until a base case is reached. From the preceding paragraph you can
see that a stack is essential for the execution of all recursive methods.

Stacks are commonly used to implement a fundamental algorithm known as Depth First Search (DFS) that you will
learn in ITEC 3150: Advanced Programming. Among many other applications, DFS is crucial for uncovering
important properties and structures of large, sophisticated computer or social networks. It is used, for example, by
search engines to crawl the Web.

Yet another application is parsing in program compilation. When the source code of a program is compiled, the
parser of the compiler uses a stack to parse the expressions and statements in the code for syntax errors.



4/5/21, 10)50 PMIntermediate Programming

Page 147 of 185http://itec2150.gitlab.io/

The abovementioned applications are sophisticated and beyond the scope of this course. Next we present a
classical problem that is still nontrivial but can be readily solved using a stack.

8.5.3. A Classical Application: Checking for Balanced Parentheses

We conclude the section on stacks with a classical parsing problem that is amenable to a stack.

We consider here a sequence of parentheses '(' and ')'. The same applies to '[' and ']', or '{' and '}'. A sequence of
parentheses is balanced if every ')' closes a preceding '(', and conversely every '(' is closed by a subsequent ')' in the
sequence. For example, sequences ( ), ( )( ), ( ( ) ), and ( ( ) ( ) ) ( ) are all balanced, whereas sequences )(, ( ) ), ( ( ) and
( )( ) ) are not balanced. The problem of interest here is to decide whether a given sequence of parentheses is
balanced. The problem comes up in the parsing of programs for syntax errors. (Can you see how this is relevant?)

The problem does not appear easy as it may seem hard to find matching pairs of '(' and ')'. The key observation is if
a sequence is balanced, then as we process it from left to right, every ')' closes the last preceding '(' that remains to
be closed. This is LIFO! With this idea in mind, we have the following simple method that solves the problem.

We assume that every character in the input string is either '(' or ')'. The method processes the input from left to
right. Upon seeing each '(', the method pushes it to the stack. Upon seeing a ')', the method attempts to find a
matching '(' by popping the stack. If at this point the stack is empty (before the whole input is processed), then the
current character is an outstanding ')' that does not close a preceding '('. Therefore, the input is not balanced and
the method returns false. If the method exits the loop after processing the whole input but the stack is not empty,
then there is some outstanding '(' early in the input that is not closed by a subsequent ')'. Therefore, the input is
balanced if and only if the stack is empty after the whole input is processed. This is what the method returns.

In one of the exercises, you will be asked to use a stack to solve a variant of the problem, where '(', ')', '[', ']', '{' and
'}' could all be present in the input. This has been a popular interview questions for positions in the software
industry!

8.6. Queues

publicpublic staticstatic booleanboolean isBalanced(String parentheses) {
    Stack<Character> stack = newnew Stack<>();
    forfor (charchar p : parentheses.toCharArray()) {
        ifif (p == '(') {
            stack.push(p);
        }
        elseelse { // i.e. if p == ')'
            ifif (stack.empty()) {
                returnreturn falsefalse;
            }

            stack.pop();
        }
    }

    returnreturn stack.empty();
}

JAVA
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17



4/5/21, 10)50 PMIntermediate Programming

Page 148 of 185http://itec2150.gitlab.io/

A queue is another very special list where elements are added only to the back (or tail) and removed only from the
front (or head). Traditionally, the operation of adding to the back of a queue is called enqueue, and that of
removing from the front of a queue is called dequeue. In this writing however we use the more casual terms add
and remove. The following image from Wikipedia (https://en.wikipedia.org/wiki/Queue_(abstract_data_type)) depicts a
queue.

Dequeue
Enqueue

Back Front

In contrast to a stack, a queue has the property known as first in, first out (FIFO). That is, the first element that
enters the queue is the first element that comes out.

8.6.1. The Queue Interface

The Queue interface extends the Collection interface and provides an abstraction of a queue data structure. Note
that in Java Queue is not a class. It is an interface with several implementations. Most often, a standard FIFO
queue is implemented by a LinkedList. This is not surprising because a queue is a special linked list where we add
at one end and remove from the other.

At https://docs.oracle.com/javase/8/docs/api/java/util/Queue.html you can find a detailed description of the
Queue<E> interface. Below we summarize the important methods of the interface.

boolean add(E e). Adds the specified element to the tail of the queue and returns true as long as the element is
successfully added.

boolean offer(E e). Same as add(E e).

E remove(). Removes and returns the element at the head of the queue. The method throws a
NoSuchElementException if the the queue is empty.

E poll(). Same as remove(), but returns null if the the queue is empty.

E peek(). Returns the element at the head of the queue without removing it. Returns null if the queue is empty.

E element(). Same as peek(), but throws a NoSuchElementException if the the queue is empty.

https://en.wikipedia.org/wiki/Queue_(abstract_data_type)
https://docs.oracle.com/javase/8/docs/api/java/util/Queue.html


4/5/21, 10)50 PMIntermediate Programming

Page 149 of 185http://itec2150.gitlab.io/

boolean addAll(Collection<? extends E> c). Adds all the elements of the specified collection to the queue in the
order defined by the collection’s iterator, and returns true if all the elements are successfully added. The
method throws a NullPointerException if the specified collection is null.

int size(). Returns the size of the queue, i.e. the number of elements in the queue.

boolean isEmpty(). Returns true if and only if the queue is empty (i.e. size() == 0).

void clear(). Clears the queue.

The very simple code below shows how to create a queue and use its methods.

Notice that in the program the queue is created as a linked list. The following is the output of the program, which
demonstrates the FIFO nature of a queue.

The elements leave the queue in the same order as they enter the queue.

8.6.2. Applications of Queues

Like stacks, queues have many important applications despite their simplicity. Due to their FIFO nature, queues
are used to implement schedulers of resources that are shared among many customers, where the customers are
served on a first come, first serve basis.

importimport java.util.*java.util.*;

publicpublic classclass QueueDemo {

    publicpublic staticstatic voidvoid main(String[] args) {
        Queue<Integer> queue = newnew LinkedList<>();

        forfor (intint i = 1; i <= 6; i++) {
            queue.add(i);
        }
        System.out.println("Queue after elements are added: ");
        System.out.println(queue);
        System.out.println();

        System.out.println("Emptying the queue: ");
        whilewhile (!queue.isEmpty()) {
            System.out.print(queue.remove() + " ");
        }
    }
}

JAVA
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

Queue after elements are added:
[1, 2, 3, 4, 5, 6]

Emptying the queue:
1 2 3 4 5 6



4/5/21, 10)50 PMIntermediate Programming

Page 150 of 185http://itec2150.gitlab.io/

Queues are the data structures for implementing another fundamental algorithm known as Breadth First Search
(BFS) that you will learn in ITEC 3150: Advanced Programming. Along with DFS, BFS plays a crucial role in the
discovery of important properties and structures of large networks.

8.7. Priority Queues
A priority queue is a collection of elements that are associated with a "priority" value. Unlike a FIFO queue where
the earliest arriving element is first served, in a priority queue the element with the "highest priority" is first
served. To give a concrete example, let’s consider the emergency room of a hospital where many patients wait to
be admitted. Ideally the most ill patient should be first served. One idea to implement this is to assign a "priority"
to each patient based on the severity of his/her illness. When a patient room is available, the ER admits the waiting
patient with the "highest priority". This is a real-world example of a priority queue.

But exactly what is priority? How do we systematically represent and implement priority in our programs? We
must carefully answer these questions in order to precisely define a priority queue.

Here we assume that the elements of our collection are objects from a class that has an order. This means that we
can compare any two objects x and y of the class, and the result of the comparison is one of the three possible
outcomes:

x is smaller than y; or

x equals y; or

x is greater than y (i.e. y is smaller than x).

Some data types and classes have a natural ordering. The simplest example is integers, which are ordered by their
numerical values. Another example is the class of strings, which are ordered alphabetically. More generally, we
can take any class that implements the Comparable interface; in this case an order is defined by the compareTo
method of the class.

Sometimes it is not enough to rely on the natural ordering of a class, or the order pre-defined by the compareTo
method of a class. We may need to take a previously unordered class and impose an order, or take a class with an
already existing order but define a new order on demand for the class. Fortunately, Java allows us to do so by
defining our own custom comparators, using the Comparator interface that we will discuss shortly.

We can now define a priority queue as a collection of objects, each associated with a priority that is determined by
a given ordering, whether natural or custom. The object with the "highest" priority is first served. There are two
types priority queues, min priority queues and max priority queues, that have opposite notions of priority. In a min
priority queue, smaller elements have higher priorities. In contrast, in a max priority queue, larger elements have
higher priorities. Here smaller or larger is with respect to a specified ordering. For example, in a min priority
queue of integers with the natural ordering, 1 would have a higher priority than 2; whereas in a max priority
queue, 2 would have a higher priority than 1. In Java, a priority queue is by default a min priority queue.

8.7.1. The PriorityQueue Class



4/5/21, 10)50 PMIntermediate Programming

Page 151 of 185http://itec2150.gitlab.io/

At https://docs.oracle.com/javase/8/docs/api/java/util/PriorityQueue.html you can find a detailed description of the
PriorityQueue<E> class. Below we summarize the important methods of the class.

boolean add(E e). Adds the specified element to the priority queue and returns true as long as the element is
successfully added. The method throws a ClassCastException if an order is not defined for the class E, and a
NullPointerException if the element is null.

boolean offer(E e). Same as add(E e).

E remove(). Removes and returns the element with the highest priority in the queue. The method throws a
NoSuchElementException if the the queue is empty.

E poll(). Same as remove(), but returns null if the the queue is empty.

E peek(). Returns the element at the head of the queue without removing it. Returns null if the queue is empty.

E element(). Same as peek(), but throws a NoSuchElementException if the the queue is empty.

boolean addAll(Collection<? extends E> c). Adds all the elements of the specified collection to the priority
queue in the order defined by the collection’s iterator, and returns true if all the elements are successfully
added. The method throws a NullPointerException if the specified collection is null or any element of the
collection is null.

int size(). Returns the size of the queue, i.e. the number of elements in the queue.

boolean isEmpty(). Returns true if and only if the queue is empty (i.e. size() == 0).

void clear(). Clears the priority queue.

The PriorityQueue class has many constructions. Here we discuss three of them. The first two constructors create
priority queues for classes that have a natural ordering defined. The third constructor creates a priority queue for
an arbitrary class - it takes a custom comparator for the class as a parameter, and creates a priority queue that
orders the elements of the class according to the given comparator.

PriorityQueue(). Creates an empty priority queue that orders its elements according to the natural ordering of
the generic class E. If an ordering is not defined for the class, the constructor will still create an empty queue;
however in this case when one attempts to add an object of the class to the queue, the add method will throw a
ClassCastException.

PriorityQueue(Collection<? extends E> c). Creates a priority queue that consists of the elements in the
specified collection and orders its elements according to the natural ordering of the generic class. The
constructor throws a ClassCastExeption if an ordering is not defined for the class, and a
NullPointerException if any element of the collection is null.

PriorityQueue(Comparator<? super E> comparator). Creates an empty priority queue that orders its elements
according to the specified comparator for the generic class. This constructor allows you to define a custom
comparator to order the elements of the priority queue. In Java, a priority queue is by default created as a min
priority queue. If the generic class has a natural ordering, you can use this contructor to create a max priority
queue by passing Collections.reverseOrder() as the comparator.

https://docs.oracle.com/javase/8/docs/api/java/util/PriorityQueue.html


4/5/21, 10)50 PMIntermediate Programming

Page 152 of 185http://itec2150.gitlab.io/

We now give a simple example that demonstrates how to use the constructors and methods of the PriorityQueue
class.

The following is the output of the program.

The program first creates a (min) priority queue pq1 of integers using the default constructor, then adds 5, 3, 2, 6,
4, 1 to the queue. When the elements are removed pq1, they come out in ascending order. Next the program uses
the third constructor above to create a max priority queue pq2 of integers, with Collections.reverseOrder() as
the comparator, then adds the same numbers to the queue. When the elements are removed pq2, they come out in
descending order. Finally, the program uses the second comparator above to create a (min) priority queue of
strings from an existing collection, which is the list ["Shanghai", "Boston", "New York", "Zurich", "Atlanta"]. When
the elements are removed pq3, they come out in ascending alphabetic order.

8.7.2. The Comparator Interface

importimport java.util.*java.util.*;

publicpublic classclass PQDemo {

    publicpublic staticstatic voidvoid main(String[] args) {
        PriorityQueue<Integer> pq1 = newnew PriorityQueue<>();
        pq1.add(5); pq1.add(3); pq1.add(2);
        pq1.add(6); pq1.add(4); pq1.add(1);
        System.out.print("Emptying pq1:  ");
        whilewhile (!pq1.isEmpty()) {
            System.out.print(pq1.remove() + " ");
        }

        PriorityQueue<Integer> pq2 = newnew PriorityQueue<>(Collections.reverseOrder());
        pq2.add(5); pq2.add(3); pq2.add(2);
        pq2.add(6); pq2.add(4); pq2.add(1);
        System.out.print("\n\nEmptying pq2:  ");
        whilewhile (!pq2.isEmpty()) {
            System.out.print(pq2.remove() + " ");
        }

        PriorityQueue<String> pq3 = newnew PriorityQueue<>(
     Arrays.asList("Shanghai", "Boston", "New York", "Zurich", "Atlanta"));
        System.out.print("\n\nEmptying pq3:  ");
        whilewhile (!pq3.isEmpty()) {
            System.out.print(pq3.remove() + "  ");
        }
    }
}

JAVA
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Emptying pq1:  1 2 3 4 5 6

Emptying pq2:  6 5 4 3 2 1

Emptying pq3:  Atlanta  Boston  New York  Shanghai  Zurich



4/5/21, 10)50 PMIntermediate Programming

Page 153 of 185http://itec2150.gitlab.io/

The Comparator interface allows one to define a custom comparator for any class by implementing the compare
method. At https://docs.oracle.com/javase/8/docs/api/java/util/Comparator.html#compare-T-T- you can find all
details of the interface Comparator<T>, where T is a generic class to define a comparator for. Here we only
discuss the method

which is the method to implement in order to define your comparator on the class T. The method takes two objects
o1 and o2 of the class T as parameters, and returns an integer which is interpreted as follows:

If the returned value is negative, then o1 is smaller than o2.

If the returned value is zero, then o1 and o2 are equal.

If the returned value is positive, then o1 is greater than o2.

We illustrate how to implement the compare method with a few examples as follows.

We know that the String class already has a natural ordering which is the alphabetic ordering. But suppose that in
an application we need to impose a different ordering that orders strings first by length. If two strings have the
same length, then we order them alphabetically. There are several ways to implement this comparator. The
traditional way is to explicitly define a comparator class as follows.

In the code above, we define a class StringLenComparator that implements the Comparator interface for String.
In the class all we need to do is to implement the compare method. If the parameters s1 and s2 have different
lengths, then the compare method determines their order by length. In this case the method returns

Notice that if s1 is shorter than s2, then the returned value s1.length() - s2.length() is negative, therefore s1
precedes s2 in the new order. Conversely, if s1 is longer than s2, then the returned value s1.length() - s2.length()
is positive, therefore s2 precedes s1 in the new order.

If s1 and s2 have the same length, then the compare method returns

publicpublic intint compare(T o1, To2)
JAVA

classclass StringLenComparator implementsimplements Comparator<String> {
    publicpublic intint compare(String s1, String s2) {
        ifif (s1.length() != s2.length()) {
            returnreturn s1.length() - s2.length();
        }
        elseelse {
            returnreturn s1.compareTo(s2);
        }
    }
}

JAVA
 1
 2
 3
 4
 5
 6
 7
 8
 9
10

s1.length() - s2.length()
JAVA

https://docs.oracle.com/javase/8/docs/api/java/util/Comparator.html#compare-T-T-


4/5/21, 10)50 PMIntermediate Programming

Page 154 of 185http://itec2150.gitlab.io/

which orders the two strings by the natural ordering of the String class.

Once we define the StringLenComparator, we can use it to create a priority queue as follows.

The program creates a priority queue pq of strings that orders elements according to the new ordering imposed by
StringLenComparator. It does so by passing to the constructor an object of the StringLenComparator as the
comparator. After that, the program adds the elements of a list to pq and then empty pq. For contrast, the program
also creates, using the default constructor, a priority queue pq2 that orders elements by the natural alphabetic
ordering, and repeats the above for pq2. The following is the output of the program.

The string "Red", which is of length 3, is the shortest of all the strings in the list. Therefore, "Red" appears first as
elements are removed from the priority queue pq. It is followed by "Blue", "Cyan" and "Gold", each of length 4.
Because they have the same length, they are order alphabetically among them. They are followed by "Green"
which is of length 5. The string "Green" is followed by "Indigo", "Orange", "Purple", "Violet" and "Yellow", each of
which is of length 6. Again because these five are of the same length, they are order alphabetically among them. In
the meantime, you see that the same strings come out in the alphabetic order as they leave the priority queue pq2.

Alternatively, we can use a lambda expression to define the comparator and simplify the above code, as follows.

s1.compareTo(s2)
JAVA

publicpublic classclass ComparatorDemo1 {

    publicpublic staticstatic voidvoid main(String[] args) {
        List<String> list = Arrays.asList(
      "Violet", "Indigo", "Blue", "Green", "Yellow", "Orange", "Red", "Cyan", "Gold", "Purple");

        PriorityQueue<String> pq = newnew PriorityQueue<>(newnew StringLenComparator());
        pq.addAll(list);

        System.out.println("Order imposed by the new comparator: ");
        whilewhile (!pq.isEmpty()) {
            System.out.print(pq.remove() + "  ");
        }

        System.out.println("\n\nNatural order: ");
        PriorityQueue<String> pq2 = newnew PriorityQueue<>();
        pq2.addAll(list);
        whilewhile (!pq2.isEmpty()) {
            System.out.print(pq2.remove() + "  ");
        }
    }
}

JAVA
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

Order imposed by the new comparator:
Red  Blue  Cyan  Gold  Green  Indigo  Orange  Purple  Violet  Yellow

Natural order:
Blue  Cyan  Gold  Green  Indigo  Orange  Purple  Red  Violet  Yellow



4/5/21, 10)50 PMIntermediate Programming

Page 155 of 185http://itec2150.gitlab.io/

We now return to the emergency room example that was discussed at the beginning of the section. Suppose that
the following class has been created to represent a patient.

Here the attribute severity quantifies the severity of the illness of a patient. The larger the value of severity, the
more severe the illness of the patient. The attribute arrival represents the patient’s arrival time. The smaller the
value of arrival, the earlier the patient arrived.

We now define an ordering of patients in order to decide the order to admit them. We first order patients by
severity in descending order. That is, patients with a higher severity value should be seen earlier. If two patients
have the same severity value, we then order them by arrival in ascending order. That is, patients with the same

importimport java.util.*java.util.*;

publicpublic classclass ComparatorDemo2 {

    publicpublic staticstatic voidvoid main(String[] args) {

        List<String> list = Arrays.asList(
       "Violet", "Indigo", "Blue", "Green", "Yellow", "Orange", "Red", "Cyan", "Gold", "Purple");

        Comparator<String> cmp = (s1, s2) -> {
            ifif (s1.length() != s2.length()) {
                returnreturn s1.length() - s2.length();
            }
            elseelse {
                returnreturn s1.compareTo(s2);
            }
        };

        PriorityQueue<String> pq = newnew PriorityQueue<>(cmp);
        pq.addAll(list);

        System.out.println("Order imposed by the new comparator: ");
        whilewhile (!pq.isEmpty()) {
            System.out.print(pq.remove() + "  ");
        }
    }
}

JAVA
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

classclass Patient {
    String name;
    intint arrival;
    intint severity;

    publicpublic Patient(String name, intint arrival, intint severity) {
        thisthis.name = name;
        thisthis.arrival = arrival;
        thisthis.severity = severity;
    }

    publicpublic String toString() {
        returnreturn String.format("(%s, %d, %d)", name, arrival, severity);
    }
}

JAVA
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15



4/5/21, 10)50 PMIntermediate Programming

Page 156 of 185http://itec2150.gitlab.io/

level of severity are seen on the first come, first serve basis. The following program implements this ordering.

The program creates a comparator cmp that compares patients by the ordering specified above. Notice that when
patients p1 and p2 have different values for severity, the comparator returns p2.severity - p1.severity, not
p1.severity - p2.severity. This is because the patients are to be ordered first in descending order of severity. If

then

therefore returning p2.severity - p1.severity will make p1 precede p2.

The following is the output of the program.

importimport java.util.*java.util.*;

publicpublic classclass ER {

    publicpublic staticstatic voidvoid main(String[] args) {
        List<Patient> list = Arrays.asList(
    newnew Patient("Alice", 1, 6), newnew Patient("Bob", 2, 9), newnew Patient("Carol", 3, 8),
    newnew Patient("Frank", 4, 7), newnew Patient("Eve", 5, 8), newnew Patient("Dan", 6, 7));

        Comparator<Patient> cmp = (p1, p2) -> {
            ifif (p1.severity != p2.severity) {
                returnreturn p2.severity - p1.severity;
            }
            elseelse {
                returnreturn p1.arrival - p2.arrival;
            }
        };

        PriorityQueue<Patient> pq = newnew PriorityQueue<>(cmp);
        pq.addAll(list);

        System.out.println("Order to admit the patients: ");
        whilewhile (!pq.isEmpty()) {
            System.out.print(pq.remove() + "  ");
        }
    }
}

JAVA
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

p1.severity > p2.severity,
JAVA

p2.severity - p1.severity < 0,
JAVA

Order to admit the patients:
(Bob, 2, 9)  (Carol, 3, 8)  (Eve, 5, 8)  (Frank, 4, 7)  (Dan, 6, 7)  (Alice, 1, 6)



4/5/21, 10)50 PMIntermediate Programming

Page 157 of 185http://itec2150.gitlab.io/

Bob appears first because he has the highest severity value 9. He is followed by Carol and Eve who both have the
same severity value 8. Carol precedes Eve because Carol arrived earlier. They are followed by Dan and Frank who
both have the same severity value 7. Frank precedes Dan because Frank arrived earlier. Finally comes Alice, who
has the lowest severity value 6.

8.7.3. Applications of Priority Queues

The most direct application of priority queues is sorting, which is the problem of arranging a collection of
elements according to a specific order. Indeed, as you see from the examples of the section, after building a
priority queue containing the elements of a collection, the elements come out in the sorted order as they are
removed from the queue. We will revisit this method of sorting in the next section which is devoted to sorting.

Priority queues are used to implement priority-based resource scheduling, where a resource is shared among
many customers with different priorities. The emergency room example given in this section is one such example.
Another example is CPU scheduling, where the CPU of a computer is shared by many processes with different
priorities, and the operating systems maintains a priority queue of active processes waiting to be executed.

Priority queues have many other applications. For example, a priority queue underlies the famous Dijkstra’s
algorithm, an efficient algorithm that computes single-source shortest paths in a graph and has made digital
navigation a reality. Variants of Dijkstra’s algorithm are corner stones for navigations systems such as Google
Maps, and the Open Shortest Path First (OSPF) protocol for routing packets on the Internet.

Priority Queues are also used in Huffman codes which are used to compress MP3 and JPEG files.

8.8. Sorting
Sorting is the problem of arranging an array of elements according to a specified order. It is one of the most
fundamental problems in computing and is inherent in many applications, too many to enumerate. It is also one of
the best studied problems in computing, and sorting algorithms abound. In this section, we present six sorting
algorithms. We first describe three simple algorithms known as Selection Sort, Insertion Sort and Bubble Sort.
Chances are that you have inadvertently used at least one of them when you sort a small collection of numbers.
While they are intuitive and straightforward, they are very slow when the collection to sort is large. We then
discuss three efficient algorithms known as Heap Sort, Merge Sort and Quick Sort. These three algorithms are
more subtle and clever than the aforementioned ones, and are very fast even when the input is large.

For simplicity and without loss of generality, we describe and demonstrate all the algorithms in this section for
sorting an array of integers in the ascending order. The algorithms extend readily for arrays of any generic type
that either implements the Comparable interface, or is supplied with a custom comparator. In describing the
algorithms we also envision that the input array is laid out horizontally, with the low index 0 on the far left end
and the high index, which is the length of the array minus 1, on the far right end.

8.8.1. Naive Iterative Algorithms

Selection Sort



4/5/21, 10)50 PMIntermediate Programming

Page 158 of 185http://itec2150.gitlab.io/

Selection Sort iteratively sorts an array by maintaining a sorted subarray on the left and an unsorted subarray on
the right. Initially the sorted subarray is empty and the unsorted subarray consists of the entire input array. (Here
we assume that the input array is unsorted.) In each iteration, the algorithm finds the smallest element of the
unsorted subarray, swaps it with the leftmost element of the unsorted subarray, and moves boundary between the
sorted and unsorted subarrays one position to the right. Notice that every element of the unsorted subarray is
always greater than or equal to every element of the sorted subarray during the execution of the algorithm. By the
end of the algorithm, the sorted subarray consists of all elements of the entire array in the sorted order, while the
unsorted subarray becomes empty. The following figure from Daniel Liang’s textbook, Introduction to Java
Programming and Data Structures, illustrates each iteration of the algorithm when the input array is [2, 9, 5, 4, 8, 1,
6]. In the figure, each line represents an iteration of the algorithm. In each iteration, the elements colored blue on
the left are elements of the sorted subarray, while the remaining elements to the right are elements of the
unsorted subarray.

 



4/5/21, 10)50 PMIntermediate Programming

Page 159 of 185http://itec2150.gitlab.io/

The following code implements Selection Sort.

Insertion Sort

Like Selection Sort, Insertion Sort maintains a sorted subarray on the left which is initially empty and eventually
consists of the entire array in the sorted order, and an unsorted subarray on the right which initially consists of
the entire input array and eventually becomes empty. However, unlike in Selection Sort, elements of the unsorted
subarray may be smaller than elements of the sorted subarray during the execution of Insertion Sort. In every
iteration, Insertion Sort inserts the leftmost element of the unsorted subarray into the sorted subarray at the
correct position, by comparing it with and shifting elements of the sorted array starting at the back. The following
figure from Daniel Liang’s textbook, Introduction to Java Programming and Data Structures, illustrates each
iteration of the algorithm when the input array is [2, 9, 5, 4, 8, 1, 6]. In the figure, each line represents an iteration
of the algorithm. In each iteration, the elements colored red on the left are elements of the sorted subarray, while
the remaining elements to the right are elements of the unsorted subarray.

publicpublic staticstatic voidvoid selectionSort(intint[] A) {

    /**
     * In each iteration, i is the index of the leftmost element
     * of the unsorted subarray
     */
    forfor (intint i = 0; i < A.length - 1; i++) {
        intint minIndex = i;

        /**
         * Find the index of the smallest element of the unsorted subarray
         */
        forfor (intint j = i + 1; j < A.length; j++) {
            ifif (A[j] < A[minIndex]) {
                minIndex = j;
            }
        }

        /**
         * Swap the leftmost element and the smallest element of the
         * unsorted subarray
         */
        ifif (minIndex != i) {
            swap(A, i, minIndex);
        }
    }
}

publicpublic staticstatic voidvoid swap(intint[] A, intint i, intint j) {
    intint temp = A[i];
    A[i] = A[j];
    A[j] = temp;
}

JAVA
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33



4/5/21, 10)50 PMIntermediate Programming

Page 160 of 185http://itec2150.gitlab.io/

 

The following code implements Insertion Sort.



4/5/21, 10)50 PMIntermediate Programming

Page 161 of 185http://itec2150.gitlab.io/

Selection Sort vs. Insertion Sort

While Selection Sort and Insertion Sort are both very simple and intuitive, Insertion Sort is usually faster than
Selection Sort for the following reason. In every pass of Insertion sort, the inner loop can stop as soon as it finds
the correct position for the "current" element to insert into the sorted subarray. In contrast, in every pass of
Selection Sort, the inner loop must exhaust the entire unsorted subarray to find the minimum. In particular, when
the input array is nearly sorted, Insertion Sort is a lot faster than Selection Sort.

Bubble Sort

publicpublic staticstatic voidvoid insertionSort(intint[] A) {

    forfor (intint i = 1; i < A.length; i++) {

        /**
         * The current element to insert into the sorted subarray
         */
        intint current = A[i];

        intint j = i - 1; // Start at the back of the sorted subarray

        /**
         * Shift elements of the sorted subarray one position to the right
         * until an element less than or equal to the current element is found
         * or the beginning of the sorted subarray is passed
         */
        whilewhile (j >= 0 && A[j] > current) {
            A[j+1] = A[j];
            j--;
        }

        /**
         * Insert the current element at the correct position
         */
        A[j+1] = current;
    }
}

JAVA
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27



4/5/21, 10)50 PMIntermediate Programming

Page 162 of 185http://itec2150.gitlab.io/

Bubble Sort iteratively sorts an array by maintaining an unsorted subarray on the left which initially consists of
the entire input array and eventually becomes empty, and a sorted subarray on the right which is initially empty
and eventually consists of the entire array in the sorted order. During the execution of the algorithm, every
element of the unsorted subarray is smaller than or equal to every element of the sorted subarray. In every pass,
the algorithm moves the largest element of the unsorted subarray to the correct position by comparing and
swapping adjacent elements. The following figure from Daniel Liang’s textbook, Introduction to Java Programming
and Data Structures, illustrates every pass of the algorithm when the input array is [2, 9, 5, 4, 8, 1].

Generalizing the idea in the example above results in an algorithm that sorts an array in exactly n-1 passes, where
n is the length of the array. This however could be wasteful because the array may be sorted in much fewer passes.
For example, if the input array is [6, 1, 2, 3, 4, 5], then it is easy to check that the array would be sorted in just one
pass, therefore the next passes become unnecessary. We can improve the algorithm by stopping its execution just
when the array is sorted, using the following idea. In each pass, we have the algorithm check whether a swap
occurs between any pair of adjacent elements of the unsorted subarray. If no swap occurs during the entire pass,
then the array is already sorted, so the next passes are not needed.

The following code implements Bubble Sort.



4/5/21, 10)50 PMIntermediate Programming

Page 163 of 185http://itec2150.gitlab.io/

8.8.2. Efficient Algorithms

The three sorting algorithms discussed so far, namely Selection Sort, Insertion Sort and Bubble Sort, are all very
simple and obviously correct. They work fine when the input array is small (for example when the length of the
input array is in the order of 10,000 or less). However, they are very slow when the input array is large. More
precisely, they each have time complexity O(n^2). Your will study time complexity of algorithms and the Big O
notation in ITEC 3150: Advanced Programming. Roughly speaking, this means that for sorting an array of length n,

publicpublic staticstatic voidvoid bubbleSort(intint[] A) {

    forfor (intint pass = 1; pass < A.length; pass++) {
        booleanboolean noSwap = truetrue;

        /*
         * i = 0 to A.length - pass are indices of the
         * unsorted subarray
         */
        forfor (intint i = 0; i < A.length - pass; i++) {

            /**
             * If an element is larger than the next element, then
             * swap them and set the noSwap flag to false
             */
            ifif (A[i] > A[i+1]) {
                swap(A, i, i+1);
                noSwap = falsefalse;
            }
        }

        /**
         * If no swap occurs during the entire pass, then the array is
         * already sorted, so terminate the execution of the algorithm
         */
        ifif (noSwap) {
            breakbreak;
        }
    }
}

JAVA
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30



4/5/21, 10)50 PMIntermediate Programming

Page 164 of 185http://itec2150.gitlab.io/

the number of operations each of the three algorithms uses in the worst case, is proportion to n^2. For example, to
sort an array of 10 million elements (i.e. when n = 10,000,000 = 10^7), Selection Sort, Insertion Sort and Bubble Sort
each take approximately 10^14 operations in the worst case. A modern commodity PC executes about one billion
(10^9) operations per second. Therefore, on such a platform, it takes each of the three naive algorithms about
10^14 / 10^9 = 100,000 seconds, which is about 28 hours, to sort an array of 10 million elements.

In this subsection, we present three efficient sorting algorithms - Heap Sort, Merge Sort and Quick Sort, which
are very fast even when the input is large. More precisely, they each have time complexity only O(n log n), where
the logarithm is of base 2. Notice that while 10 million may be large, the base-2 logarithm of 10 million is less than
24, which is small! Therefore, to sort an array of 10 million elements, Heap Sort, Merge Sort and Quick Sort each
take about only 2.4 * 10^8 operations, as opposed to 10^14 in the case of the three naive algorithms. On a platform
that executes one billion operations per second, it takes each of Heap Sort, Merge Sort and Quick Sort only about
0.3 second to sort an array of 10 million elements!

Heap Sort

As we saw from the section on Priority Queues, every priority queue gives rise to a sorting algorithm as follows:

1. Construct a priority queue consisting of all elements of the input array, where the priority is defined by either
the natural ordering of the elements, or the ordering imposed by a custom comparator.

2. Remove one element at a time from the priority queue until it is empty.

By the priority queue property, the elements appear in the sorted order as they exit the queue. This algorithm is
known as Heap Sort when the priority queue is implemented using a heap, a data structure that you will learn in
ITEC 3150: Advanced programming. Indeed, a Java priority queue is heap-based. The following code implements
Heap Sort.

Merge Sort

publicpublic staticstatic voidvoid heapSort(Integer[] A) {

    /**
     * Construct a priority queue consisting of all elements of the
     * input array. Using this constructor is more efficient than using
     * the default constructor to create an empty priority queue and then
     * adding each element of the array to the queue.
     */
    PriorityQueue<Integer> pq = newnew PriorityQueue<>(Arrays.asList(A));

    /**
     * Remove one element at a time from the priority queue and copy it
     * to the array until the priority queue is empty.
     */
    forfor (intint i = 0; i < A.length; i++) {
        A[i] = pq.remove();
    }
}

JAVA
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18



4/5/21, 10)50 PMIntermediate Programming

Page 165 of 185http://itec2150.gitlab.io/

Merge Sort is an efficient algorithm that sorts an array by recursion, a powerful technique you learned in Chapter
7. In the base case where the array is of length one, the algorithm does nothing, as a singleton is sorted. In general,
the algorithm divides the array into two halves - a left half consisting of elements from the start to the middle
index of the array and a right half consisting of the remaining elements, then recursively sorts the two halves, and
finally merges the two sorted halves into a whole sorted array. This is an instance of a general algorithm design
paradigm known as divide-and-conquer. The following figure from Daniel Liang’s textbook, Introduction to Java
Programming and Data Structures, illustrates the execution of the algorithm when the input array is [2, 9, 5, 4, 8, 1,
6, 7].

 

As you can see, the actual sorting happens when subarrays are merged. The following code implements Merge
Sort as well as the method for merging two sorted arrays into a single one.

publicpublic staticstatic voidvoid mergeSort(intint[] A) {

    /**
     * Base Case: If the array is of length 1, then do nothing
     */
    ifif (A.length == 1) {
        returnreturn;
    }

JAVA
 1
 2
 3
 4
 5
 6
 7
 8
 9



4/5/21, 10)50 PMIntermediate Programming

Page 166 of 185http://itec2150.gitlab.io/

Quick Sort

    intint n = A.length;
    intint m = n / 2; //Find the middle index of the array

    /**
     * Divide the array into two halves: left and right
     */
    intint[] left = newnew intint[m];
    intint[] right = newnew intint[n-m];
    forfor (intint i = 0; i < m; i++) {
        left[i] = A[i];
    }
    forfor (intint i = 0; i < n-m; i++) {
        right[i] = A[m+i];
    }

    /**
     * Recursively sort the left and right halves
     */
    mergeSort(left);
    mergeSort(right);

    /**
     * Merge the two sorted subarrays into a whole sorted array
     */
    merge(left, right, A);
}

/**
 * Merges two sorted arrays into a single sorted array
 *
 * @param left   a sorted array
 * @param right  another sorted array
 * @param A      the destination to store the merged array
 */
publicpublic staticstatic voidvoid merge(intint[] left, intint[] right, intint[] A) {
    intint curL = 0;
    intint curR = 0;
    intint cur = 0;

    whilewhile (curL < left.length && curR < right.length) {
        ifif (left[curL] < right[curR]) {
            A[cur++] = left[curL++];
        }
        elseelse {
            A[cur++] = right[curR++];
        }
    }

    whilewhile (curL < left.length) {
        A[cur++] = left[curL++];
    }
    whilewhile (curR < right.length) {
        A[cur++] = right[curR++];
    }
}

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



4/5/21, 10)50 PMIntermediate Programming

Page 167 of 185http://itec2150.gitlab.io/

Quick Sort is another efficient divide-and-conquer sorting algorithm. In the base case where the array is of length
zero or one, there is nothing to do. In general, the algorithm picks a pivot element from the array, then partitions
the array around pivot into two subarrays - a left subarray where every element is no greater than the pivot, and a
right subarray where every element is greater than the pivot. After the partition, the algorithm recursively sorts
the left subarray and the right subarray. The pivot element is usually chosen randomly among all array elements.
It is clear that partitioning the array around the pivot is the essential part of the algorithm, where sorting actually
takes place. An obvious way to implement that is to create two auxiliary arrays for the left and right subarrays
respectively. Once the pivot is chosen, one can simply iterate over the array and compare each element with the
pivot. If an element is smaller than or equal to the pivot, then copy it to the left subarray; otherwise copy it to the
right subarray. It is however wasteful to create the extra space and copy elements back and forth between the
original and auxiliary arrays whenever we can avoid it. It turns out that partitioning can be done in place, that is,
in the original array itself without any auxiliary data structure, as illustrated in the following figure from Daniel
Liang’s textbook, Introduction to Java Programming and Data Structures, for the input array [5, 2, 9, 3, 8, 4, 0, 1, 6,
7].



4/5/21, 10)50 PMIntermediate Programming

Page 168 of 185http://itec2150.gitlab.io/

 
We now briefly explain the in-place partition algorithm. The illustration above assumes that the first element of
the input array is chosen as the pivot. In general, when the pivot is not the first element, one can swap it with the
first element and then proceed with the same method. The algorithm maintains two pointers, a low pointer that
starts at second index of the input array, and a high pointer that is initially at the far-right end of the array. The
algorithm repeatedly advances the low pointer to the right until an element greater than the pivot is found,
advances the high pointer to the left until an element smaller than or equal to the pivot is found, and swaps the
two elements, until the two pointers cross each other. At this point, all elements to the left of the low pointer are
smaller than or equal to the pivot, while all elements to the right of the high pointer are greater than the pivot. The
algorithm completes the partition by swapping the pivot which was at the beginning of the input array, with the
element at the high pointer which is now to the immediate left of the low pointer. After the swap, all elements to
the left of the pivot are smaller than or equal to the pivot, and all elements to the right of the pivot are greater than
the pivot. The following code implements Quick Sort as well as the partition method.



4/5/21, 10)50 PMIntermediate Programming

Page 169 of 185http://itec2150.gitlab.io/

publicpublic staticstatic voidvoid quickSort(intint[] A) {
    quickSortHelper(A, 0, A.length, newnew Random());
}

/**
 * The recursive helper method for Quick Sort that sorts in place a section of
 * an array with a start index (inclusive) and an end index (exclusive)
 *
 * @param A      an array
 * @param start  the start index of the section to sort
 * @param end    the end index of the section to sort
 * @param rand   the Random object for picking a pivot element
 */
publicpublic staticstatic voidvoid quickSortHelper(intint[] A, intint start, intint end, Random rand) {

    /**
     * Base Case: If the array is of length 0 or 1, then do nothing
     */
    intint n = end - start;
    ifif (n <= 1) {
        returnreturn;
    }

    /**
     * Pick a random index between start (inclusive) and end (exclusive),
     * choose the element at this index as the pivot element, and
     * swap the pivot with the element at start
     */
    intint pivotIdx = rand.nextInt(n) + start;
    swap(A, start, pivotIdx);

    /**
     * Partition the section of A between start and end
     * around the pivot
     */
    pivotIdx = partition(A, start, end);

    /**
     * Recursively sort the left subarray and the right subarray
     */
     quickSortHelper(A, start, pivotIdx, rand);
     quickSortHelper(A, pivotIdx+1, end, rand);
}

/**
 * Partitions the section of an array between a start index and an end index
 * around a pivot element which is initially at the start index
 *
 * @param A      an array
 * @param start  the start index of the section
 * @param end    the end index of the section
 * @return       the index of the pivot after the partition
*/
publicpublic staticstatic intint partition(intint[] A, intint start, intint end) {

JAVA
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60



4/5/21, 10)50 PMIntermediate Programming

Page 170 of 185http://itec2150.gitlab.io/

A Comparison of Heap Sort, Merge Sort and Quick Sort

Both Heap Sort and Merge Sort have worst-case time complexity O(n log n). However, due to the cost to maintain a
heap, Heap Sort is usually slower than Merge Sort.

    intint pivot = A[start];
    intint low = start + 1;
    intint high = end - 1;

    /**
     * Repeat until the low pointer and high pointer cross each other
     */
    whilewhile (low <= high) {

        /**
         * Advance the low pointer to the right until
         * an element greater than the pivot is found
         */
        whilewhile (low <= high && A[low] <= pivot) {
            low += 1;
        }

        /**
         * Advance the high pointer to the left until an element
         * smaller than or equal to the pivot is found
         */
        whilewhile (low <= high && A[high] > pivot) {
            high -= 1;
        }

        /**
         * Swap the elements at the low and high indices
         */
        ifif (low < high) {
            swap(A, low++, high--);
        }
    }

    /**
     * Swap the pivot which was at the start index with
     * the element at the high index. After the swap the
     * partition is complete. The pivot is now at the
     * high index. All elements in A[start], ..., A[high-1]
     * are smaller than or equal to the pivot. All elements
     * in A[high+1], ..., A[end-1] are greater than the pivot.
     */
    swap(A, start, high);

    /**
     * Return the high index which is now the pivot index
     */
    returnreturn high;
}

 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110



4/5/21, 10)50 PMIntermediate Programming

Page 171 of 185http://itec2150.gitlab.io/

In the worst case, Quick Sort could have time complexity O(n^2). This happens when bad pivot elements are
chosen during the execution of the algorithm that result in unbalanced partitions. An extreme case is where in
every recursive call the algorithm picks the smallest or the largest element of a subarray as the pivot, so that all
elements of the subarray appear on one side of the pivot after the partition. Such worst-case scenarios are
however extremely unlikely if the pivot is chosen randomly as we do in our implementation above. On average
and in the overwhelming majority of all cases, Quick Sort has time complexity O(n log n). Moreover, in practice
Quick Sort is usually faster than Merge Sort, a primary reason being that Quick Sort is in place. In contrast, Merge
Sort needs to allocate auxiliary memory space and copy elements between the input and auxiliary space to merge
sorted subarrays. Even on a modern computer, memory operations are still significantly slower than arithmetic
operations. When speed is our primary concern, Quick Sort is usually the sorting algorithm of choice.

However, Merge Sort has a nice property known as stability that makes it desirable for sorting complex objects. A
sorting algorithm is stable if it respects the order of the elements in the original input; that is, for elements of the
same priority, the algorithm preserves their order in the original input. This notion of stability makes no sense for
elements of a primitive type. However, it is meaningful when we sort objects of a class. We demonstrate the
meaning and usefulness of stability using the example given at this site
(https://cafe.elharo.com/programming/java-programming/why-java-util-arrays-uses-two-sorting-algorithms/). Consider the
following class that represents students taking a course with several sections.

Suppose that we are given an input array of Student objects that are already sorted by name, as follows:

Suppose that now we sort the students by section. After sorting the given array using Merge Sort (or any stable
sorting algorithm), the array becomes

classclass Student {
    String lastName;
    String firstName;
    intint section;
}

JAVA
1
2
3
4
5

John Alisson  2
Nabeel Aronowitz 3
Joe Jones  2
James Ledbetter 2
Ilya Lessing  1
Betty Lipschitz 2
Betty Neubacher 2
John Neubacher 3
Katie Senya  1
Jim Smith  3
Ping Yi  1

JAVA
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

https://cafe.elharo.com/programming/java-programming/why-java-util-arrays-uses-two-sorting-algorithms/


4/5/21, 10)50 PMIntermediate Programming

Page 172 of 185http://itec2150.gitlab.io/

Notice that the students are not only sorted by section - students within each section are also sorted by name. This
is because prior to the sorting by section, the students were already sorted by name. Because Merge Sort is stable,
as it sorts the students by section, it preserves the original order (by name) of the students with the same section
number.

In contrast, Quick Sort is instable, because the in-place partition algorithm is not order preserving. The following is
one possible outcome when we apply Quick Sort to sort the same input by section:

Therefore, for sorting complex objects, when stability is required, Merge Sort is usually the preferred algorithm.

Arrays.sort, Collections.sort and Arrays.parallelSort

Sorting is so fundamental that every modern programming language provides efficient generic methods or
functions for sorting in their APIs. Java provides two such methods - Arrays.sort for sorting arrays, and
Collections.sort for sorting lists. All the details of the two methods can be found here
(https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html) and here
(https://docs.oracle.com/javase/8/docs/api/java/util/Collections.html). When sorting a list, Collections.sort first copies the list
elements to an array, then sorts the array using Arrays.sort, and finally copies the elements from the sorted array
back to the list. Below we elaborate on Arrays.sort.

Ilya Lessing  1
Katie Senya  1
Ping Yi  1
John Alisson  2
Joe Jones  2
James Ledbetter 2
Betty Lipschitz 2
Betty Neubacher 2
Nabeel Aronowitz 3
John Neubacher 3
Jim Smith  3

JAVA
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

Ilya   Lessing 1
Ping   Yi           1
Katie   Senya          1
Betty   Lipschitz      2
Betty   Neubacher      2
Joe   Jones          2
James   Ledbetter      2
John   Alisson        2
John   Neubacher      3
Jim   Smith          3
Nabeel   Aronowitz      3

JAVA
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html
https://docs.oracle.com/javase/8/docs/api/java/util/Collections.html


4/5/21, 10)50 PMIntermediate Programming

Page 173 of 185http://itec2150.gitlab.io/

Arrays.sort is defined for arrays of all primitive types with a natural ordering (all numerical types and characters),
as well as arrays of objects. For sorting objects, Arrays.sort applies to every class that implements the Comparable
interface, and an arbitrary class when supplied with a custom comparator for the class. For example, if A is an
array of objects of a class C that implements Comparable, then

sorts A according to the ordering defined by the compareTo method of Class C.

If A is an array of objects of an arbitrary class and cmp is a custom comparator defined for the class, then

sorts A according to the ordering specified by the comparator cmp.

Arrays.sort employs two sorting algorithms - it uses a fast version of Quick Sort known as Dual Pivot Quicksort to
sort primitives, and uses a fast variant of Merge Sort known as Timsort to sort objects.

We finally mention that in Java 8 another sorting method, Arrays.parallelSort, was introduced which improves
the performance of Arrays.sort by multithreading, a topic you will learn in ITEC 3150: Advanced Programming.

8.9. Exercises

8.9.1. Exercise 1

You are not allowed to use the Collections.reverse method for this exercise.

(a) Write a generic method

that reverses the order of the elements of a given array list in place, that is, in the original list itself without using
any auxiliary data structure. Since the input list is an array list, it is efficient to access its elements by index. For this
method, you are allowed to iterate over the input list by index, and use the get and set methods of the list to read
and modify the element at any index.

(b) Write a generic method

that on input a linked list, returns another linked list that contains the elements of the original list in the reverse
order. Since the input list is a linked list, it is inefficient to access its elements by index. For this method, you are not

allowed to access the elements of the input list by index. Instead, you must use the iterator of the input list to

Arrays.sort(A)
JAVA

Arrays.sort(A, cmp)
JAVA

publicpublic staticstatic <E> voidvoid reverseArrayListInPlace(ArrayList<E> list)
JAVA

publicpublic staticstatic <E> LinkedList<E> reverseLinkedList(LinkedList<E> list)
JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 174 of 185http://itec2150.gitlab.io/

iterate over the list just once in either direction, and en route add each element to an output list using a proper
add method.

(c) Write a generic method

that reverses the order of the elements of a given linked list in place. As in Part (b), you are not allowed to access
the elements of the input list by index. Instead, you must iterate over the list just once using its list iterator. (Hint:
Use two iterators, one starting at the head and the other starting at the tail of the input list.)

8.9.2. Exercise 2

Implement the following generic methods using the list iterator(s) of the input list(s). For each method involving an
index, start the iterator at the end of the list that is closer to the index.

(a)

This method adds the given element to the given list at the specified index. The method should throw an
IndexOutOfBoundException if the specified index is out of range, i.e. if (index < 0 || index > list.size()). You are
not allowed to use the add(int index, E e) method of the input list.

(b)

This method removes the element at the specified index from the given list. The method should throw an
IndexOutOfBoundException if the specified index is out of range, i.e. if (index < 0 || index >= list.size()). You are
not allowed to use the remove(int index) method of the input list.

(c)

This method returns the element of the given list at the specified index. The method should throw an
IndexOutOfBoundException if the specified index is out of range, i.e. if (index < 0 || index >= list.size()). You are
not allowed to use the get(int index) method of the input list.

(d)

publicpublic staticstatic <E> LinkedList<E> reverseLinkedList(LinkedList<E> list)
JAVA

publicpublic staticstatic <E> voidvoid add(List<E> list, intint index, E element)
JAVA

publicpublic staticstatic <E> E remove(List<E> list, intint index)
JAVA

publicpublic staticstatic <E> E get(List<E> list, intint index)
JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 175 of 185http://itec2150.gitlab.io/

This method replaces the element of the given list at the specified index with the given element. The method
should throw an IndexOutOfBoundException if the specified index is out of range, i.e. if (index < 0 || index >=
list.size()). You are not allowed to use the set(int index, E element) method of the input list.

(e)

This method returns the index of the first occurrence of the specified element in the given list if the element is in
the list, and -1 otherwise. You are not allowed to use the indexOf(Object o) method of the input list.

(f)

This method returns the index of the last occurrence of the specified element in the given list if the element is in
the list, and -1 otherwise. You are not allowed to use the lastIndexOf(Object o) method of the input list.

(g)

This method removes the first occurrence of the specified element from the given list, if the element exists. The
method returns true if the specified element is present in the list, and false otherwise. You are not allowed to use
the remove(Object o) method of the input list.

(h)

This method returns true if the two given list contains the same elements in the same order. You are not allowed
to use the equals(Object o) method of either input list.

8.9.3. Exercise 3

We mentioned that a stack is a very special list with one end closed. In this exercise you are to implement a stack
using a linked list. Create a public generic class MyStack<E>. The class should have a backing linked list as a
private instance variable:

publicpublic staticstatic <E> voidvoid set(List<E> list, intint index, E element)
JAVA

publicpublic staticstatic <E> intint indexOf(List<E> list, E element)
JAVA

publicpublic staticstatic <E> intint lastIndexOf(List<E> list, E element)
JAVA

publicpublic staticstatic <E> booleanboolean remove(List<E> list, E element)
JAVA

publicpublic staticstatic <E> booleanboolean equals(List<E> list1, List<E> list2)
JAVA

privateprivate LinkedList<E> backingList;
JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 176 of 185http://itec2150.gitlab.io/

The backing list underlies the stack you are about to implement. You can use either end of the backing list as the
top of the stack.

Implement the following methods for the MyStack<E> class, using the proper methods of the backing list:

A constructor that takes no parameter and creates a new, empty stack.

public void push(E e). This method adds the specified element to the top of the stack.

public E pop(E e). This method removes and returns the element at the top of the stack. It throws an
EmptyStackException if the stack is empty.

public E peek(E e). This method returns the element at the top of the stack without removing it. It throws an
EmptyStackException if the stack is empty.

Except when checking for an empty stack, the push, pop and peek methods should only use the addFirst,
removeFirst and getFirst methods, or the addLast, removeLast and getLast methods of the backing list,
depending on which end of the list you use as the top of the stack.

8.9.4. Exercise 4

We mentioned that a queue is also a very special list where elements are only add at one end and removed at the
other end of the list. In this exercise you are to implement a queue using a linked list. Create a public generic class
MyQueue<E>. The class should have a backing linked list as a private instance variable:

The backing list underlies the queue you are about to implement.

Implement the following methods for the MyQueue<E> class, using the proper methods of the backing list:

A constructor that takes no parameter and creates a new, empty queue.

public void add(E e). This method adds the specified element to the tail of the queue.

public E remove(). This method removes and returns the element at the head of the queue. It throws a
NoSuchElementException if the queue is empty.

public E peekHead(). This method returns the element at the head of the queue without removing it. It throws
a NoSuchElementException if the queue is empty.

public E peekTail(). This method returns the element at the tail of the queue without removing it. It throws a
NoSuchElementException if the queue is empty.

Except when checking for an empty queue, the add, remove, peakHead and peakTail methods should only use
the methods for accessing the two ends of the backing list.

8.9.5. Exercise 5

privateprivate LinkedList<E> backingList;
JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 177 of 185http://itec2150.gitlab.io/

In this exercise, you are to solve variant of the balanced parentheses problem with three different types of
parentheses, where '(', ')', '[', ']', '{' and '}' could all be present in the input. Such a sequence of parentheses is
balanced if every open parenthesis is closed by a closing parenthesis of the same type and every closing
parenthesis closes an opening parenthesis of the same type in the correct order. For example, "{([])}" and "()[]{}"
are balanced, whereas "(]" and "[(])" are not balanced.

Using a stack, write a method

that on an input string consisting of '(', ')', '[', ']', '{' and '}', decides whether or not the input is a balanced sequence
of parentheses.

8.9.6. Exercise 6

Using a priority queue, write a generic method

that on input a list A of objects of the generic class E, an integer k < A.size(), and a comparator cmp on the class E,
returns a list consisting of the k smallest elements in the order that is defined by cmp. You are to write the method
following the steps below:

1. Create a priority queue for objects of the generic class E, using the given comparator cmp.

2. Add all elements of the input list A to the priority queue.

3. Call a proper method to remove from the priority queue k times. Each time an element is removed from the
priority queue, add it to an output list.

4. Return the output list.

8.9.7. Exercise 7

The Point class defined below represents points in a two-dimensional plane.

publicpublic staticstatic booleanboolean isBalanced2(String parentheses)
JAVA

publicpublic staticstatic <E> List<E> kSmallest(List<E> A, intint k, Comparator<E> cmp)
JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 178 of 185http://itec2150.gitlab.io/

Here the x and y instance variables represent the x and y-coordinates of a point in the plane.

Write a generic method

that on input a list A of points and an integer k < A.size(), returns a list consisting of the k closest points to the
origin (0, 0).

Hint:

1. Define a comparator for the Point class that gives higher priorities to points closer to the origin.

2. Call the method kSmallest from the previous exercise.

8.9.8. Exercise 8

For two numbers x and y, we define their distance to be |x - y|, i.e. the absolute value of the difference between x
and y. In this exercise, you are to write two different methods to solve the following problem: Given an array of
integers, find the distance between the closest pair of elements, i.e. find the minimum distance among all pairs of
elements in the array. For example, if the input array is [8, 12, 19, 3, 15], then your methods should return 3,
because the closest pair of elements in the array is [12, 15] and their distance is |12 - 15| = 3.

(a) Write a method

that finds the minimum distance among all pairs of elements in the input array A, by exhaustively searching for the
minimum through all pairs of elements using a nested loop.

publicpublic classclass Point {
    privateprivate doubledouble x;
    privateprivate doubledouble y;

    publicpublic Point(doubledouble x, doubledouble y) {
        thisthis.x = x;
        thisthis.y = y;
    }

    publicpublic doubledouble getX() {
        returnreturn x;
    }

    publicpublic doubledouble getY() {
        returnreturn y;
    }
}

JAVA

publicpublic staticstatic List<Point> kClosestToOrigin(List<Point> A, intint k)
JAVA

publicpublic staticstatic intint closestPairBruteForce(intint[] A)
JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 179 of 185http://itec2150.gitlab.io/

(b) In this part, you are to write a much more efficient method for solving the same problem than the brute-force
method you wrote in Part (a). Write a method

that finds the minimum distance among all pairs of elements in the input array A, by first sorting the input array
using Arrays.sort or Arrays.parallelSort, then finding the minimum distance among only the adjacent pairs of
elements in the sorted array.

(c) Write a main method to test and compare your code for closestPairBruteForce and closestPairSort, as
follows:

First generate a small (say of length 10) array of random integers, call both methods on the same input array
and be sure that they both give the same correct answer. Repeat this several times.

Now try the following input sizes: 1000, 10,000, 100,000 and 1000,000. For each input size, generate an array of
that size consisting of random integers, call both methods on the same input array and time your methods.
Repeat this several times for each input size. What do you observe? If your implementations are correct, you
should observe that closestPairSort is much faster closestPairBruteForce as the input size increases. Can you
explain this phenomenon, using time complexity that is briefly discussed in this chapter?

8.9.9. Exercise 9

Implement a generic version of Selection Sort, Insertion Sort, Bubble Sort, Heap Sort, Merge Sort and Quick Sort
for sorting an array of objects from a generic class that implements Comparable. The headers of the methods
should be as follows:

publicpublic staticstatic intint closestPairSort(intint[] A)
JAVA

publicpublic staticstatic <T extendsextends Comparable<? supersuper T>> voidvoid selectionSort(T[] A)
JAVA

publicpublic staticstatic <T extendsextends Comparable<? supersuper T>> voidvoid insertionSort(T[] A)
JAVA

publicpublic staticstatic <T extendsextends Comparable<? supersuper T>> voidvoid bubbleSort(T[] A)
JAVA

publicpublic staticstatic <T extendsextends Comparable<? supersuper T>> voidvoid heapSort(T[] A)
JAVA

publicpublic staticstatic <T extendsextends Comparable<? supersuper T>> voidvoid mergeSort(T[] A)
JAVA

publicpublic staticstatic <T extendsextends Comparable<? supersuper T>> voidvoid quickSort(T[] A)
JAVA



4/5/21, 10)50 PMIntermediate Programming

Page 180 of 185http://itec2150.gitlab.io/

Also write a main method to test the above six methods as follows. Create a small array of strings or objects from
any class that implements Comparable. Call each of the six methods above, as well as Arrays.sort or
Arrays.parallelSort, to sort the same input array and verify that they all give the correct result.

8.9.10. Exercise 10

(a) Implement a generic version of Selection Sort, Insertion Sort, Bubble Sort, Heap Sort, Merge Sort and Quick
Sort for sorting an array of objects from a generic class when supplied with a custom comparator. The headers of
the methods should be as follows:

The parts below are for testing and comparing your methods in Part (a).

(b) Create the following class that represents students taking a course with several sections:

Write a constructor and a toString method for the class.

Define a comparator cmp for the Student class that orders students first by last name in alphabetic order, then by
first name in alphabetic order when two students have the same last name.

(c) Write a main method to test your methods from Part (a) as follows.

Create an array consisting of the following Student objects in the given order:

publicpublic staticstatic <T> voidvoid selectSort(T[] A, Comparator<T> cmp)
JAVA

publicpublic staticstatic <T> voidvoid insertionSort(T[] A, Comparator<T> cmp)
JAVA

publicpublic staticstatic <T> voidvoid bubbleSort(T[] A, Comparator<T> cmp)
JAVA

publicpublic staticstatic <T> voidvoid heapSort(T[] A, Comparator<T> cmp)
JAVA

publicpublic staticstatic <T> voidvoid mergeSort(T[] A, Comparator<T> cmp)
JAVA

publicpublic staticstatic <T> voidvoid quickSort(T[] A, Comparator<T> cmp)
JAVA

classclass Student {
    String lastName;
    String firstName;
    intint section;
}

JAVA
1
2
3
4
5



4/5/21, 10)50 PMIntermediate Programming

Page 181 of 185http://itec2150.gitlab.io/

Call each of the six methods from Part (a), as well as Arrays.sort or Arrays.parallelSort, to sort the array using
the comparator cmp from Part (b). All the seven methods should give

as the outcome.

(d) Define another comparator cmp2 that orders Student objects by section in ascending order. In the main
method call each of the six methods from Part (a), as well as Arrays.sort or Arrays.parallelSort, to sort the
resulting array from Part (c), this time using cmp2 as the comparator. Compare the results of the seven methods.
What do you observe? Which methods are stable?

8.10. Issue Tracker/Comments
Issue Tracker (https://github.com/hpark7/help_desk/issues)

John   Neubacher     3
Ilya   Lessing    1
Nabeel   Aronowitz      3
Joe   Jones          2
Katie   Senya          1
John   Alisson        2
Betty   Neubacher      2
James   Ledbetter      2
Betty   Lipschitz      2
Ping   Yi           1
Jim   Smith          3

JAVA
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

John Alisson  2
Nabeel Aronowitz 3
Joe Jones  2
James Ledbetter 2
Ilya Lessing  1
Betty Lipschitz 2
Betty Neubacher 2
John Neubacher 3
Katie Senya  1
Jim Smith  3
Ping Yi  1

JAVA
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

https://github.com/hpark7/help_desk/issues


4/5/21, 10)50 PMIntermediate Programming

Page 182 of 185http://itec2150.gitlab.io/

9. Glossary
Behavior

actions of an object; represented by the methods of an object.

Class

a blueprint that defines an object.

Heap memory

dynamically allocated memory used to store objects.

Object

represents an entity in the real world and has state and behavior; an instance of a class.

Object-oriented programming

a way of organizing code around objects, instead of actions.

Reference

memory address of where the object is located.

Reference type

a class; variable of this type can reference an object of a class.

Reference variable

variable of a class type, which contains a reference to the object of that class.

Stack memory

stores local variables of primitive type and reference variables; memory is accessed in First In Last Out order.

State

represented by data fields or attributes of the object.

Association

a general binary relation between two separate classes. For example, a student taking a course is an association
between the Student class and the Course class.

Aggregation

an association when one object uses another object.

Composition

an association when one object owns other class and other class cannot meaningfully exist. Composition is
stronger than aggregation.



4/5/21, 10)50 PMIntermediate Programming

Page 183 of 185http://itec2150.gitlab.io/

Overriding method

When a method in a subclass has the same name, same parameters or signature, and same return types(or sub-
type) as a method in its superclass.

Overloading method

a class is allowed to have more than one method having the same name as long as their parameter lists are
different.

Inheritance

a mechanism to define new classes from existing classes. In java, classes can inherit the properties and methods
of superclass.

Superclass

a general class which a method(s) to a subclass. Or the class being inherited from.

Subclass

The derived class that is derived from superclass.

Exception

An erroneous or anomalous condition that comes up when a program is running.

Exception Handling

An approach that separates a program’s normal code from it’s error-handling code.

Throw

To throw an exception is to create an exception object and pass it off to the run-time environment. This is done
explicity in code using the throw keyword.

Stack Trace

A stack trace is sometimes called a stack backtrace or even just a backtrace. The stack traceis a list of stack
frames. A stack frame indicates a moment during an application’s execution when a method is called. A stack
frame contains information about where the method was called from in the Java source code. So the Java stack
trace generated when an exception is called is a list of frames that starts at line in the method the exception
occurred and extends back to when the program started.

File

A resource used to store a collection of data on a computer storage device.

Text File

A computer file consisting of human readable Unicode characters. Typically read using a text editor like the one
in most IDE’s. Considered human readable.



4/5/21, 10)50 PMIntermediate Programming

Page 184 of 185http://itec2150.gitlab.io/

Binary File

A computer file stored in the native binary code of the computer. Not considered human readable.

Input

Information or data from an external source read into a Java program.

Output

Information or data from a Java program written to an external source.

Open a File

Create a stream of data to or from a computer file.

File Stream

A one way queue of data either to or from a file. The order of data in the queue represents the order of the data
in the file.

Close a File

Flush and close a stream of data to or from a file. When writing a file, forces the program to wait until all data in
the stream has been written to the file. When reading a file, terminates any further data coming from the file.

Delimiter

Delimiters are whitespace characters used to separate various pieces of data in a text file. Examples are a blank
space, tab, or end of line characters which do not show up as print in a text file.

bounded type

A generic type being specified as a subtype of another type

upper bounded wildcard (<? extends E>)

bounds with upper inheritance constraint by using etends keyword.

lower bound wildcard (<? super E>)

bounds is using the wildcard character (?), following by the super keyword by its lower bound.

unbounded wildcard(<?>)

bounds which is specified using <?>. this is called unknown type.

raw type

a name of a generic class or interface without any type arguments.

type erasure

the process of type checking only at compile time and discarding the element type information at runtime.



4/5/21, 10)50 PMIntermediate Programming

Page 185 of 185http://itec2150.gitlab.io/

recursion

computation that invovles a function (or method) calling itself

base case

the simplest case in a recursive solution

recursive case

mirrors the overall solution but with simplified input values

direct recursion

when the same method calls itself

indirect recursion

when more than one method is involved in a recursion

recursive backtracking

when recursion is used to build a set of candidate solutions and a criteria is applied to select the right ones


